Нормы воздухообмена

Содержание

МЕТОДИЧЕСКОЕ ПОСОБИЕ

для выполнения расчетов по охране труда

в дипломных проектах

Н. Новгород

1. Расчет воздухообмена в производственном помещении………………………… 3

2. Расчет воздухообмена в сварочных цехах……………………………………………. 5

3. Расчет местной вытяжной вентиляции………………………………………………… 15

4. Расчет искусственного освещения………………………………………………………. 18

5. Расчет естественного освещения………………………………………………………… 32

6. Определение уровня шума в производственных помещениях………………. 39

7. Расчет виброизоляции………………………………………………………………………. 46

8. Расчет защитного заземления……………………………………………………………. 52

9. Расчет зануления……………………………………………………………………………… 57

10. Расчет электромагнитного излучения…………………………………………………………… 60

11. Список литературы……………………………………………………………………………………… 62

Расчет воздухообмена в производственном помещении.

Расчет количества приточного воздуха, необходимого для общеобменной вентиляции выполняется из условия выделения в производственном помещении вредных веществ (например, окиси углерода СО) и избытков явного тепла.

Приведенный ниже расчет воздухообмена выполнен в соответствии со СниП 2.04.05-91 “Отопление, вентиляция и кондиционирование воздуха. Нормы проектирования” для теплого периода года, как наиболее тяжелого режима работы системы механической вентиляции.

1.1.Расчет воздухообмена из условия выделения вредных веществ:

,

где L в — количество приточного или удаляемого воздуха в зависимости от принятой схемы механической вентиляции, м 3 /c ,

G вр — количество вредных веществ, выделяемых в производственном помещении, мг/с ,

q ПДК — предельно допустимая концентрация вредных веществ в помещении, мг/м 3 . Определяется из ГОСТ 12.1005-88 ССБТ “Общие санитарно-гигиенические требования к воздуху рабочей зоны”.

q П — концентрация вредных веществ в наружном воздухе, подаваемом в помещение, мг/м 3:

При одновременном выделении в воздух рабочей зоны нескольких вредных веществ, расчет ведут по тому вредному веществу, для которого требуется подача чистого воздуха в наибольших количестве.

Так, например, в термических цехах при работе закалочных агрегатов. Работающих на природном газе, воздух рабочей зоны загрязняется оксидом углерода (СО). Количество оксида углерода, поступающего в воздух рабочей зоны, определяется по формуле:

,

где В — расход природного газа, кг/ч ;

b — количество отходящих газов, образующихся при сжигании 1кг топлива, кг/кг (для газовых печей 15 кг/кг );

р — процентное содержание СО в отходящих газах (3-5%).

Расход природного газа определяется по формуле:

,

где a — удельный расход топлива на 1кВт мощности, принимается равным 0.58кг/кВтч ;

К р — коэффициент режима работы печи с учетом разогрева и регулирования процессом горения, принимается равным от 1.2 до1.5;

N -мощность печей, кВт .

1.2.Расчет воздухообмена из условия выделения избыточного явного тепла.

При выделении избыточного явного тепла в производственном помещении количество приточного (удаляемого) воздуха определяется из условия компенсации избытков этого тепла:

.

Здесь Q д — избытки явного тепла в производственном помещении, Вт , есть разность между поступающим в помещение явным теплом и количеством уходящего из помещения тепла определяется из формулы:

где q -удельный избыток явного тепла, Вт/м 3 .

В холодных цехах (механических, сборочных и др.) удельный избыток явного тепла составляет не менее q =23 Вт/м 3 . В горячих цехах (литейных, кузнечных, прокатных, термических, котельных и др.) удельный избыток явного тепла в оценочных работах принимается равным 100¸200 Вт/м 3 в более точных расчетах величины Q д определяют с учетом тепла, выделяемого всеми энергетическими установками.

V — объем производственного помещения, м 3 ;

С в — массовая теплоемкость приточного воздуха, принимаемая 1000 Дж/(кг×К);

r в — плотность приточного воздуха, принимаемая 1.2 кг/м 3 ;

t уд — температура удаляемого из помещения воздуха, определяемая по формуле:

где t норм — нормируемая температура в помещении выбирается по ГОСТ 12.1.005-88 в зависимости от категории помещения для теплого периода года;

Dt — градиент температуры, принимаемый для непроизводственного помещения равным 0.5 град/м , для производственных помещений равным 1.5 град/м ;

Н — расстояние от пола до центра вытяжных проемов, м ;

t п — температура приточного воздуха. Принимается на 5¸8 С 0 ниже температуры нормированной в рабочей зоне.

При проектировании систем вентиляции разработчики обязаны обращать внимание на указания, рекомендации и требования контролирующих инстанций. Нормы, на которые необходимо ориентироваться, ‒ это СанПины, ГОСТы, данные АВОК и так далее. Они достаточно подробны, многочисленны и сложны, так как учитывают большое количество параметров:

  • назначение объекта ‒ например, если обсчитывается вентиляция технических помещений, нормы будут существенно отличаться от применимых для жилых пространств;
  • размеры помещения — от этого зависит количество подаваемого/удаляемого воздуха, модели и мощность вентиляционных установок, тип используемой системы и так далее;
  • количество одновременно находящихся на объекте людей;
  • время года, температурный режим, влажность ‒ особенно это актуально для жилых пространств, но и для склада важно, в каких условиях хранится продукция;
  • требования пожаробезопасности, другие специфические условия.

Основные методики расчета, учитываемые при нормировании вентиляции

Специалисты ориентируются на обобщенные таблицы. В них учитываются необходимые параметры и после расчета по всем возможным методикам выбирается наибольшее значение ‒ его и берут за основу при проектировании (этот подход не используется при организации подобных систем в бассейнах). Вне зависимости от того, что именно в них описывается ‒ воздухообмен в детском саду или вентиляция складских помещений, нормы базируются на нескольких ключевых показателях:

  • объем и расход воздуха на одного человека;
  • уровень аэродинамического сопротивления в системе;
  • допустимый процент вредных выделений;
  • ориентировочно возможная мощность воздухонагревателей и вентиляционного оборудования;
  • количество окон, влажность, температура и так далее.

В жилых, общественных и производственных помещениях, где люди проводят много времени, расчет производят по следующим методикам:

  • по площади, без учета количества людей ‒ нормы оговаривают ориентирование на объемы приточного воздуха для объектов разного назначения (например, для жилых это 3 куб. м/час на 1 кв. м);
  • по нормам санитарно-гигиенического характера (для одного человека) ‒ жилым пространствам необходимо 30 куб. м/час, для производственных, больших, чем 20 кв. м ‒ не менее 20, если организуется вентиляция офисных помещений, нормы предусматривают 40 куб. м;
  • по нормам вытяжки (кратность) ‒ учитывается, сколько раз в течение часа обновляется состав аэромасс в помещении (в сводных таблицах приводятся нормативные кратности).

Особенности норм для жилого и офисного типов помещений

К жилым пространствам предъявляются высокие требования ‒ при проектировании вентиляции должна обеспечиваться безопасность людей. В подобном строительстве обычно используется классическая схема аэрации ‒ естественно-вытяжная, с каналами. Удаляются загрязненные массы, в первую очередь, из санитарной зоны ‒ кухонь, ванных ‒ причем пространство считается по умолчанию единым по уровню давления и негерметичным, поэтому при расчете учитывают подрезку дверных полотен и параметры окон.

Нормы воздухообмена подразделяются по назначению помещений:

  • для жилых комнат ‒ постоянный параметр кратности не менее 30 куб.м/час или 0,35 1 /ч, но при общей площади квартиры менее 20 кв. м ‒ 3 куб. м на 1 куб.м помещения;
  • для кухонь с электроплитой 60 куб.м/час, с газовой ‒ 90, минимальный ‒ 30 и 45 соответственно;
  • для ванной и туалетных комнат — 25 куб.м/час при разделении санузла, 50 при совмещенной организации;
  • для постирочных, гардеробных, подсобных комнат ‒ кратность не менее 1 на один час.

Это краткое описание, так как жилищное проектирование ‒ объемная, сложная отрасль, и в нем учитывается впечатляюще большое количество нормативных показателей. То же, в принципе, касается и офисных пространств ‒ там люди проводят много времени, причем объединяясь порой в немаленькие группы. По проектировочным нормам для подобных объектов необходимо учитывать, чтобы:

  • температура воздуха поддерживалась на уровне 19-21 градуса Цельсия в холодный период и 23-25 в теплый;
  • в помещениях без окон была организована механическая система вентилирования, а в санузлах, курительных, офисах более 35 кв. м ‒ независимые вытяжные системы;
  • подвижность воздуха поддерживалась на уровне 0,2-0,5 м/сек;
  • кратность составляла: для стандартных кабинетов (начальственные, бухгалтерские, рабочие и так далее) ‒ 1,5 на приток, для копировальных и переплетно-брошюровочных служб ‒ 3-5, на вытяжку для гардеробных ‒ 2, уборных ‒ 50, кладовых ‒ 1-1,5.

Нормирование технических, производственных и складских объектов

Нормы вентиляции в производственных помещениях и в складских зонах формируются несколько иным способом. Здесь, кроме нужд людей, необходимо учитывать особенности и технические требования для оборудования и содержащихся в помещении товаров, веществ. Если говорить о санитарной составляющей, то в зале без окон необходимо организовать подачу наружных аэромасс ‒ на одного человека 60 куб. м/час. Также нормируется (по отдельным наименованиям):

  • присутствие и уровень вредных паров, газов, испарений;
  • температура в помещении (в том числе избыточная теплота), влажность.

Как правило, система, которая организуется в помещении, сочетает естественные и механические источники вентилирования и базируется на приточно-вытяжном принципе. Основной параметр ‒ кратность. Для производственно-складских помещений она может варьироваться от единицы до 10. В целом расчет по одной лишь кратности недостаточен и нужно учитывать:

  • скорость всасывания воздушных масс ‒ для малотоксичных газов 0,5-0,7 м/сек, для высокотоксичных 1,2-1,7;
  • необходимый расход аварийной вентиляции ‒ с коэффициентом не менее 8;
  • соответствие специфике хранящихся ценностей (для склада ГСМ, например, воздухообмен должен быть не меньше 2,5, а при хранении ацетона ‒ 9-10).

доцент Миронова Е.М.

л а б о р а т о р н а я р а б о т а

Расчет кратности воздухообмена в помещении

Методические указания

Цель работы:

Ознакомиться с понятием кратности воздухообмена в помещениях и приобрести практические навыки по расчету этой метеорологической величины.

Учебные вопросы:

    Определение кратности воздухообмена в помещении, осуществляемого путем естественной аэрации.

    Расчет площади открытой фрамуги, через которую поступает атмосферный воздух в помещение, необходимой для достижения заданной кратности воздухообмена.

    Определение времени проветривания помещения при периодическом открывании фрамуги известной площади.

Порядок выполнения работы:

    Изучить методику определения кратности воздухообмена помещения.

    Получить у преподавателя задание на проведение расчетов.

    Провести расчеты по определению кратности воздухообмена, площади сечения на воздухообмен и времени воздухообмена.

1. КРАТНОСТЬ ВОЗДУХООБМЕНА В ПОМЕЩЕНИИ

Воздухообменом называют замену загрязненного воздуха чистым. Воздухообмен делят на естественный и искусственный. Естественный происходит вследствие разности и перепада давления воздуха внутри помещения и снаружи. Осуществляется он с помощью периодического открывания форточек, фрамуг, окон (аэрация), а также через щели стен, окон, двери (инфильтрация).

Искусственный воздухообмен осуществляется путем использования различных систем механической вентиляции и кондиционирования.

Кратность воздухообмена определяет, сколько раз в час необходимо менять весь воздух помещения, чтобы очистить его до предела допустимой концентрации загрязнения (ПДК).

Кратность воздухообмена N задается формулой:

раз в 1 час. (1)

где: V (м 3 /ч) – необходимое количество чистого воздуха, поступающего в помещение в течение 1 часа; W (м 3) – объем помещения.

Путем естественной аэрации обычно достигают трех – четырехкратного воздухообмена, а при необходимости большей кратности прибегают к механической вентиляции.

Объем чистого приточного воздуха, который должен разбавлять вредные газы до предельно допустимой концентрации, определяется по формуле:

м 3 /ч, (2)

где: В – количество вредного вещества (газа), поступающего в помещение в 1 час, мг/ч;

ρ В — ПДК вредного вещества в воздухе рабочего помещения, мг/м 3 ;

ρ 0 – концентрация того же вредного вещества в приточном наружном воздухе, мг/м 3 .

Количество вредных газов В , находящихся в воздухе рабочего помещения, можно определить несколькими способами:

а) Измерением концентрации газа на единицу объема b с помощью газоанализатора. Тогда количество вредного вещества определяется по формуле:

B = a ∙ b ∙ W мг/ч,

где: а – коэффициент инфильтрации (для камеральных цехов а=1 , для гаражей а=2 );

b – концентрация вредного вещества в воздухе (мг/м 3 в 1 час);

W (м 3) – кубатура рабочего помещения.

б) Определением расхода вредного вещества всеми работающими за смену (8 часов) в одном рабочем помещении

мг/ч,

где b п – количество материала, содержащего вредное вещество, расходуемое всеми работающими в данном помещении, мг.

в) С учетом выделения углекислого газа (СО 2) в процессе дыхания человека в объеме 22,6 литров в 1 час. Тогда

В=22,6· n л/ч,

где: n – число работающих в помещении.

2. УСЛОВИЯ ДОСТИЖЕНИЯ ТРЕБУЕМОЙ КРАТНОСТИ ВОЗДУХООБМЕНА ПУТЕМ ЕСТЕСТВЕННОЙ АЭРАЦИИ

Величина потока воздуха Q , проникающего внутрь помещения в результате перепада давлений, определяется формулой:

М 3 /с, (3)

где: α = 0,6
— коэффициент, учитывающий расход воздуха через фрамугу применительно к зданиям промышленного и городского типа;

S (м 2) – суммарная площадь сечений, через которые поступает воздух в помещение; u 1 (м/с) – скорость ветра с наветренной стороны здания;

а 1 – соответствующий аэродинамический коэффициент, зависящий от формы и конструкционных особенностей здания,
;

u 2 (м/с) – скорость ветра с подветренной стороны, для средних условий

а 2 – соответствующий аэродинамический коэффициент,
;

Для обеспечения заданной кратности воздухообмена N требуется выполнение условия:

V = 3600 Q (4),

где коэффициент 3600 появился в результате перевода часа в секунды.

Согласно (1), (3), условие (4) можно переписать в виде:

,

, м 2 (5)

Предполагается, что чистый воздух поступает в помещение через сечение S непрерывно в течение всего рабочего дня.

Во избежание сквозняков, а также в холодное время года аэрацию помещения осуществляют с помощью периодического открывания фрамуг. В этом случае кратность воздухообмена показывает, сколько раз в 1 час необходимо проветривать помещение. Время проветривания t можно определить из условия:

(6)

В формуле (6) площадь S 1 считать известной.

3. ПРИМЕРЫ РАСЧЕТА ВОЗДУХООБМЕНА

Задача 1.

Определить кратность воздухообмена производственного помещения высотой h = 3,5 м, в котором работают 20 человек, на каждого человека приходится 4,5 м 2 площади. Загрязнение воздуха происходит за счет выдыхаемого углекислого газа. Принудительная вентиляция отсутствует.

Количество вредного вещества В, поступающего в помещение в 1 час, задается формулой:

B = 22,6∙ n (л/ч)

м 3 /ч

Кратность воздухообмена определяется по формуле (1):

раз в 1 час

Для рассматриваемого производственного помещения n = 20 человек, объем .

Согласно формуле (7):

N =
раза в 1 час.

Следовательно, если 3 раза в 1 час производить замену загрязненного воздуха помещения чистым воздухом, концентрация углекислого газа в помещении будет ниже предельно допустимой.

Ответ: N = 3.

Задача 2.

Определить площадь сечения S , через которую в помещение поступает чистый воздух, для обеспечения кратности воздухообмена N = 3 в помещении объемом
.

Скорости ветра с наветренной и подветренной сторон и соответствующие коэффициенты заданы: u 1 = 5 м/с; а 1 = 0,8; u 2 = 2,5 м/с; а 2 = 0,3; α = 0,7.

Воспользуемся формулой (5):

Следовательно, аэрацию рабочего помещения можно осуществлять с помощью открытой в течение всего рабочего дня форточки, площадью S =50 см * 20 см

Ответ: S = 0,1 м 2

Задача 3.

Определить время проветривания помещения объемом
, необходимое для полной замены загрязненного воздуха чистым, считая площадь открытой фрамуги известной:S 1 =1м 2 ;u 1 = 5 м/с; а 1 = 0,8; u 2 = 2,5 м/с;

а 2 = 0,3; α = 0,7.

Воспользуемся формулой (6):

Следовательно, достаточно двух минут, чтобы полностью проветрить помещение данного объема.

Ответ: t = 106 с.

Аэрацию помещения, объемом 315 м 3 , где работают 20 человек, можно осуществлять с помощью постоянно открытой форточки, площадью 0,1 м 2 . Возможно также периодическое, через каждые 20 минут, проветривание помещения с помощью открывания на 2 минуты фрамуги, площадью 1 м 2 .

4. КОНТРОЛЬНЫЕ ЗАДАНИЯ СТУДЕНТАМ

В помещении, объемом W , работает n человек. 1% помещения занят мебелью и производственным оборудованием. Определить воздухообмен помещения в результате естественной аэрации, считая загрязнителем воздуха углекислый газ, образующийся при дыхании людей.

    Определить площадь S открытой на протяжении всего рабочего дня фрамуги, обеспечивающей данную кратность воздухообмена N .

    Определить время t проветривания помещения при периодическом открывании N раз в 1 час фрамуги, площадью S 1 (S 1 >S) .

Исходные данные для выполнения задания выдаются преподавателем.

просмотров

Вентиляция общественных зданий

Основное назначение вентиляционных систем — устранение вредных выделений (пыль, газ, пары от едких веществ, избыточная влага и тепло). Специальное оборудование, устанавливаемое в помещениях, отвечает за удаление загрязненного воздуха и замену его чистым (наружным). Его монтаж нужно производить в соответствии с санитарными нормами, которые определяют необходимый уровень относительной влажности, температуры, скорости и чистоты движения воздушных масс. В конечном итоге создаются благоприятные для человека условия, независимо от того, о каком здании идет речь (производственное, административное, учебное и так далее).

Первые попытки организовать в закрытых помещениях управляемое вентилирование предпринимались еще в 19 веке. После того, как было обнаружено, что естественное проветривание не всегда продуктивно, начались разработки технологий рециркуляции воздуха. Появились первые центробежные вентиляторы. Позже были добавлены приемы механического побуждения, а после него появились и электрические двигатели (которые могли изменять частоту оборотов).

Современные общественные и частные площади строятся с учетом методических расчетов, специфических конструктивных решений. Отопление, вентиляция общественных зданий, их устройство и размещение играют значительную роль еще на этапе проектирования помещений. Распределение воздушных масс может быть сопряжено с рядом сложностей из-за их особенностей:

  • длинные коридоры на этажах;
  • разнообразие небольших закрытых помещений с индивидуальным показателем загрязненности воздуха (столовая, учебный кабинет, офис, склад);
  • наличие лифтовых шахт и лестничных проемов (вертикальная связь между уровнями строения);
  • большое количество этажей;
  • особые санитарные требования к климату и режиму работы в том или ином помещении большого здания;
  • наличие смежных площадей с разным уровнем проветриваемости.

Особенности вентиляции общественных зданий

От чистоты воздуха в закрытом пространстве зависит не только уровень комфорта, но и самочувствие людей, которые пребывают в нем постоянно. Если квартиру или дом человек может оборудовать согласно своим личным предпочтениям, то в общественном здании вопрос вентилирования целиком передан в ведение застройщика и управляющей компании.

Загрязнение неминуемо в месте скопления большого количества людей. Этот фактор не зависит от каждого, но наличие в кабинетах десятков компьютеров, оргтехники, специального профессионального оборудования неминуемо ведет к необходимости усиленного вентилирования. В некоторых случаях причиной становятся некачественные строительные материалы, применяемые при ремонте помещений, дешевая офисная мебель.

Главный враг чистого воздуха — дым от сигарет. Здания, где предусмотрены помещения для курящих, нуждаются в особенно внимательном проектировании вентиляционных систем. Требуются достаточно большие материальные затраты и неукоснительное соблюдение норм законодательства. Дым не должен проникать в соседние залы или долго задерживаться в специально оборудованных комнатах.

Вентиляция общественных зданий разрабатывается на этапе формирования проекта архитекторами. Она создается с учетом индивидуальных конструктивных характеристик всего строения и его отдельных площадей. Процедура регламентируется законодательно установленными техническими СНиП. Нормативные акты принимает исполнительная власть. Они определяют:

  • правила осуществления деятельности по градостроению;
  • инженерные изыскания;
  • архитектурно-строительное проектирование.

Для зданий и сооружений действуют строительные нормы и правила 41-01-2003. Они освещают вопросы отопления, вентиляции и кондиционирования.

Разновидности общественных сооружений с регламентированной системой вентиляции

Все здания, которые так или иначе связаны с жизнедеятельностью человека, объединяют в три группы:

  • бытовые — жилые дома;
  • трудовые — промышленные здания и сооружения;
  • общественно-административные.

В последнюю группу входят помещения как индивидуального, высокого ранга (администрация, театры), так и типового вида (массовая застройка). Их, в свою очередь, делят на 4 категории в зависимости от их функциональности:

  • Блокированные — здесь одновременно размещают магазины, кафе, ЖЭК, кинотеатры, все в одном месте для экономии пространства.
  • Универсальные, трансформирующиеся — спортивно-зрелищные или выставочно-киноконцертные помещения, которые быстро перестраивают в сооружения другого назначения при необходимости. Системы вентиляции общественных зданий такого типа разработаны с учетом соответствия универсальным нормам.
  • Многопрофильные, стационарные — подготовлены для проведения съездов, семинаров, концертов. Не нуждаются в переделке для каждого типа события.
  • Однофункциональные — театр, ресторан, школа. Их используют только в одном направлении.

Если рассматривать общественные здания с точки зрения особенных требований к вентиляции помещений, специфических строительных норм и технологических процессов, то выделяют объекты для:

  • бытового обслуживания, общественного питания и торговли (кафе, рестораны, столовые, химчистки, прачечные, бани, магазины розничной торговли);
  • отдыха и здравоохранения (аптеки, поликлиники, больницы, санатории, учреждения туризма);
  • обслуживания населения в сфере транспортных перевозок (агентства, вокзалы, кассовые конторы);
  • спорта и физкультурного оздоровления (оздоровительные и спортивные сооружения и комплексы);
  • поднятия культурного уровня (библиотеки, музеи, выставочные залы, театры, цирки);
  • воспитания, образования и подготовки кадров (детские сады, школы, ПТУ, средние общеобразовательные учреждения и ВУЗы);
  • НИИ, организаций кредитного и страхового сектора, управления (архивы, информационные центры, страховые компании, банки, проектно-конструкторские институты);
  • коммунального хозяйства (депо пожарной службы);
  • многопрофильного пользования (МФК, ТРЦ).

В помещениях каждого из перечисленных направлений еще на этапе подготовки проекта необходимо конструировать специальные системы вентиляций общественных зданий согласно строительным нормам и правилам.

Актуальный тип вентиляции для общественных зданий

При проектировании системы вентилирования общественного здания учитывают не только назначение помещения, но и климатические условия района, в котором ведется постройка. От сезонных перепадов температуры зависит, насколько часто оборудование будет нуждаться в наладке и регулировании.

Очистка воздуха может проводиться с помощью централизованного аппарата, либо отдельно для каждой конструктивно выделенной площади. Вентиляция на каждом уровне многоэтажного строения производится с применением специально организованных вертикальных каналов. По помещениям в коридорах очистка проводится с помощью горизонтальных воздуховодов (прячутся в подвесных потолках). Все вентилируемые конструкции оснащают вставками, поглощающими шум (акустические развязки для предотвращения распространения звуков между кабинетами).

Наиболее распространенный тип вентиляции, используемый в общественных зданиях, — приточно-вытяжной:

  • в больших холлах, залах заседаний, пунктах питания должна работать приточная часть системы, поставляющая свежий воздух с улицы;
  • в курилках, туалетах, служебных помещениях и кабинетах более 35 кв.м. площадью — вытяжная часть.

Для кабинетов и залов, которые не оснащены возможностью естественного проветривания (особенно, если люди в них находятся постоянно), крайне важно иметь минимум два приточных вентилятора и две вытяжки. Чаще всего в высотных зданиях устанавливают центральную систему рециркуляции воздуха с местными доводчиками тепла. В любом случае, вентиляция должна разрабатываться индивидуально с учетом этажности здания, назначения помещений и частоты использования кабинетов.

Перед проектировкой и монтажом определяют, какой именно вид воздухообмена будет использован:

  • высотный (многоэтажный);
  • сферический (концертный зал, бассейн, арена).

Приточно-вытяжная Установка потребляет малое количество энергии и легко поддается ремонту при необходимости. Дополнительное оборудование местного вытяжного назначения необходимо монтировать при условии наличия:

  • цехов горячей кухни (в ресторанах и столовых);
  • раздевалок;
  • санузлов;
  • тренажерных залов;
  • лабораторных помещений;
  • стоянок автотранспорта;
  • серверных;
  • курительных комнат;
  • аккумуляторных, кинопроекционных.

Противодымная вентиляция в общественных зданиях

Отдельно и под пристальным вниманием устанавливается противодымная вентиляция общественных зданий (так называемая аварийная система очистки воздуха). Ее проектирование проводится в соответствии со СНиП 2.08.02-89. В процессе монтажа применяют транзитные воздуховоды из огнеупорного и взрывозащищенного материала. Они разделены на секторы, которые обеспечивают быструю замену воздуха в задымленном помещении, а также увеличивают время эвакуации.

Противодымное вентилирование отвечает за то, чтобы продукты горения не попали в чистые помещения и коридоры, по которым проложен путь выхода из здания в чрезвычайных ситуациях. Косвенно наличие аварийной системы способствует работе пожарных служб и дальнейшей локализации очага возгорания. Допускается только совместное использование приточной и вытяжной частей противодымного вентилирования.

Вентиляция офисных и административных зданий

Отдельным пунктом выделяют вентиляцию общественных административных и офисных зданий. Сотрудникам и служащим приходится находиться в закрытых помещениях полный рабочий день, чистота и свежесть воздуха в кабинетах значительно влияют на их здоровье.

Вентиляция общественных административных зданий включает комплекс мер по обработке воздуха:

  • фильтрация загрязняющих веществ;
  • подогрев или охлаждение при необходимости;
  • увлажнение и осушение;
  • распределение по вентилируемым помещениям.

Очистительное оборудование размещают в специальных коробах по периметру смежных технических помещений или за полотном подвесного потолка. Непосредственно в рабочих кабинетах устанавливают вентиляционные решетки на стенах или «розетки» на потолке. От них идут каналы (воздуховоды), которые направляются к источнику чистого воздуха.

Из кабинетов и залов, площадь которых не превышает 35 кв. м., разрешено выводить воздух методом его перенаправления в коридор. В другом случае помещения должны быть оснащены индивидуальной вытяжкой.

Если этажность здания (от 1 до 3-х этажей) и количество служащих (в пределах 300 человек) позволяют, то допустимо использовать вентиляционную систему с естественным побуждением. В противном случае необходимо устанавливать конструкцию с механическим нагнетанием воздуха.

Все спроектированное оборудование должно соответствовать регламентированным правилам безопасности. Вентиляционные каналы, установленные с нарушением технологии, будут работать не в полную силу и могут привести к неприятным последствиям в случае чрезвычайного происшествия.

Подобранная по индивидуальным параметрам, и правильно смонтированная система вентиляции влияет на эмоциональное состояние коллектива в офисном помещении и посетителей в культурных заведениях. Поэтому установку оборудования стоит доверять только профессиональным мастерам. Такие эксперты готовы предоставить грамотные консультации и оказать помощь в проектировании систем вентиляции. Они ждут вас в компании «ЭкоЭнергоВент».

Норма воздуха на человека в помещении

Узнаем нормы поступления свежего воздуха в различные типы зданий и помещений, которые необходимо соблюдать при организации систем вентиляции.

Вдыхается за вдох от 3 или 4 литров воздуха, спортсменами – до 6 и более литров. В минуту производится до 15-16 вдохов. За этот промежуток времени легкие человека в спокойном состоянии осваивают 5-6 литров воздуха. В состоянии физических нагрузок у спортсменов – до 140 л в минуту.

Сколько свежего воздуха нужно человеку

  • Норма воздуха на человека в помещении
  • Воздухообмен для производственных помещений
  • Качество воздуха в коммерческих зданиях
  • Выводы

Естественный вывод: для человека жизненно необходимо обеспечивать поступление свежего воздуха в здания, где он живет, работает или проводит свободное время.

Для жилых зданий, согласно государственных строительных норм (ДБН В.2.5-67 2013 Опалення, вентиляція та кондиціонування), приняты следующие значения расхода свежего приточного воздуха, необходимого для каждого человека, находящегося в доме.

Здесь повышенно оптимальные условия определены для комнат с детьми, людьми со слабым здоровьем, пожилыми людьми. Допустимые условия – когда дискомфорт из-за качества воздуха и температурных условий может переноситься ограниченное время. Оптимальные условия – наиболее комфортные для трудовой деятельности, с нормальным тепловым балансом организма человека.

В стандарте не написано, сколько кубометров воздуха нужно человеку в час, однако перевести данные таблицы в кубометры можно следующим образом:

0, 49 дм3/с : 1000 х 60х60 = 0, 49 х 3,6 = 1,764 м3/ч. Это норма воздуха из расчета на 1 м кв. площади комнаты при высоте 2,5 м.

Или норма притока свежего воздуха в жилые комнаты и спальни с расчетом на одного человека рассчитывается так:

7 дм3/с ˑ чел. : 1000 х 60х60 = 25,2 м3/ч. Иными словами, для каждого человека, находящегося в жилом доме, системой вентиляции должен обеспечиваться приток до 25 м3 свежего воздуха в час.

Вытяжка или отвод отработанного воздуха из помещений частных помещений должны осуществляться через вентканалы в ванной или санузле.

Кратность воздухообмена в ванной комнате рассчитывается исходя из объема помещения. В среднем из ванной вентиляционной системойудаляется от 10 до 20 дм3/с воздуха. Это – до 36 м3/ч. Для квартир или домов кратность воздухообмена в ванной комнате, на кухне и в туалете зависит от размера, подаваемого в комнаты дома, воздуха. Вытяжная система вентиляции может работать независимо, через настенные или канальные вентиляторы, которые подбираются по расчетной производительности.

Приведем несколько цифр по уровню удельного расхода воздуха, нужного для каждого человека, в оптимальных условиях, при незначительном загрязнении воздуха, для помещений различного назначения. Согласно норм ДБН , для каждого человека должен быть гарантирован приток наружного воздуха в размере:

Воздухообмен для производственных помещений

Согласно ДБН В.2.5-67:2013 минимальное удельное количество приточного воздуха из расчета на каждого работающего принимается в размере:

  • до 30 м3/ч – для помещений с природным проветриванием;
  • до 60 м3/ч – для помещений без природного проветривания.

Система вентиляции цехов и лабораторий должна обеспечивать необходимое качество и количество воздуха притока с учетом 100% удаления технологических загрязнителей и вредных примесей в воздухе.

Качество воздуха в коммерческих зданиях

С учетом отечественных и европейских стандартов (ДСТУ Б EN 13779:2011) при расчете требуемого притока воздуха должно учитываться наличие разрешения на курение в служебных или общественных помещениях. От этого очень зависит кратность обновления воздуха в помещении. Обращают внимание также на качество наружного воздуха и воздуха в каждом помещении здания, допустимые концентрации загрязняющих веществ, процент воздуха рециркуляции. Для помещений, где постоянно находятся люди, учитываются также нормы расхода внешнего свежего воздуха, необходимого для одного человека.

Нормы подачи свежего воздуха на единицу площади помещения учитывают для помещений с непостоянным пребыванием людей.

Здесь IDA – категории помещений, от IDA 1 – с высоким качеством воздуха до IDA 4 – с низким качеством воздуха в помещении.

Выводы

Вентиляция необходима в любом помещении, где находится человек. Неважно, как вы ее получаете – принудительно или естественно, важность в том, чтобы вы получали необходимую норму свежего воздуха.
Вентиляция общественных, жилых или производственных помещений гарантирует здоровье людей в домашних условиях, на работе, в супермаркетах или концертных залах.

Прикидывать, на сколько часов хватит воздуха в комнате, просто не стоит. Такой вопрос логичен скорее в условиях чрезвычайных ситуаций. А для частных домов, квартир, школ, офисов или торговых центров проекты и расчеты по системам вентиляции и кондиционирования должны выполнять только квалифицированные специалисты.

В этой статье приведены только часть факторов, учитываемых в расчетах по вентиляции. Воздух в помещениях должен отвечать нормативным требованиям по качеству, поступать и удаляться в объеме, согласно проектным расчетам. Для здоровых условий в быту, на производстве и коммерческом объекте необходимы сбалансированный воздухообмен и качество воздушной среды. опубликовано econet.ru

Подписывайтесь на наш канал Яндекс Дзен!

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Расчет системы вентиляции

Главная › Вентиляция › Расчет системы вентиляции

Вентиляцию Вы можете заказать с монтажом «под ключ», позвонив по телефону в Москве: +7(499) 350-94-14. Осуществляем проектирование и поставку вентиляции по России. Письменную заявку просим Вас отправить на email mail@airclimat.ru или через форму на сайте.

  • Расчет по площади помещения
  • Расчет по санитарно-гигиеническим нормам
  • Расчет по кратностям
  • Кратность воздухообмена в помещениях жилых зданий
  • Рассчет основных параметров при выборе оборудования
  • Производительность по воздуху
  • Мощность калорифера

Отправьте заявку и получите КП

При проектировании систем вентиляции каждый инженер проводит расчеты согласно вышеупомянутых норм.

Для расчета воздухообмена в жилых помещениях следует руководствоваться этими нормами. Рассмотрим самые простые методы нахождения воздухообмена:

  • по площади помещения,
  • по санитарно-гигиеническим нормам,
  • по кратностям

Расчет по площади помещения

Это самый простой расчет. Расчет вентиляции по площади делается на основании того, что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения, независимо от количества людей.

Расчет по санитарно-гигиеническим нормам

По санитарным нормам для общественных и административно-бытовых зданий на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.

Рассмотрим на примере:

Предположим, в доме живут 2 человека, проведем расчет по санитарным нормам согласно этим данным. Формула расчета вентиляции, включающая нужное количество воздуха выглядит так:

L=n*V (м3/час) , где

  • n – нормируемая кратность воздухообмена, час-1;
  • V – объём помещения, м3

Получим, что для спальни L2=2*60=120 м3/час, для кабинета примем одного постоянного жителя и одного временного L3=1*60+1*20=80 м3/час. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество
постоянных и временных людей, определяется техническим заданием заказчика) L4=2*60+2*20=160 м3/час, запишем полученные данные в таблицу.

Помещение Lпр, м3/час Lвыт, м3/час
Кухня ≥ 90
Спальня 120 120
Кабинет 80 80
Гостинная 160 160
Коридор
Санузел ≥ 50
Ванная ≥ 25
360 525

Составив уравнение воздушных балансов ∑ Lпр = ∑ Lвыт:360<525 м3/час, видим, что количество вытяжного воздуха превышает приточный на ∆L=165 м3/час. Поэтому количество приточного воздуха необходимо увеличить на 165 м3/час. Поскольку помещения спальни, кабинета и гостиной сбалансированы то воздух необходимый для санузла, ванны и кухни можно подать в помещение смежное с ними, к примеру, в коридор, т.е. в таблицу добавится Lприт.коридор=165 м3/час. Из коридора воздухбудет перетекать в ванную, санузлы и кухню, а оттуда посредством вытяжных вентиляторов (если они установлены) или естественной тяги удалятся из квартиры. Такое перетекание необходимо для предотвращения распространения неприятных запахов и влаги. Таким образом, уравнение воздушных балансов ∑ Lпр = ∑ Lвыт: 525=525м3/час — выполняется.

Расчет по кратностям

Кратность воздухообмена — это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 -кранный воздухообмен – половину объема помещения.

В нормативном документе ДБН В.2.2-15-2005 «Жилые здания» есть таблица с приведенными кратностями по помещениям. Рассмотрим на примере, как производится рассчет по данной методике.

Кратность воздухообмена в помещениях жилых зданий

Помещения Расчетная температура (зимой),ºС Требования к воздухообмену
Приток Вытяжка
Общая комната, спальня,
кабинет
20 1-кратный
Кухня 18
Кухня-столовая 20 1-кратный По воздушному
балансу квартиры,
но не менее,
м3/час
90
Ванная 25 25
Уборная 20 50
Совмещенный санузел 25 50
Бассейн 25 По расчету
Помещение для стиральной машины в квартире 18 0,5-кратный
Гардеробная для чистки и
глажения одежды
18 1,5-кратный
Вестибюль, общий коридор,
лестничная клетка, прихожая квартиры
16
Помещение дежурного
персонала
(консъержа/консъержки)
18 1-кратный
Незадымляемая лестничная
клетка
14
Машинное помещение лифтов 14 0,5-кратный
Мусоросборная камера 5 1-кратный
Гараж-стоянка 5 По расчету
Электрощитовая 5 0,5-кратный

Последовательность расчета вентиляции по кратностям следующая:

  1. Считаем объем каждого помещения в доме (объем=высота*длина*ширина).
  2. Подсчитываем для каждого помещения объем воздуха по формуле: L=n*V (n – нормируемая кратность воздухообмена, час-1; V – объём помещения, м3)

Для этого предварительно выбираем из таблицы «Санитарно-гигиенические нормы. Кратности воздухообмена в помещениях жилых зданий» норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например, кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.

Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры. Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3. Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.

Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт

Составляем уравнение баланса ∑ Lпр = ∑ Lвыт. Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.

Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для помещений.

Рассчет основных параметров при выборе оборудования

При выборе оборудования для системы вентиляции необходимо рассчитать следующие основные параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении.

Например, для помещения площадью 50 м2 с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров/час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности:

L = n * S * H, где

  • L — требуемая производительность приточной вентиляции, м3/ч;
  • n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
  • S — площадь помещения, м2;
  • H — высота помещения, м;

Расчет воздухообмена по количеству людей:

L = N * Lнорм, где

  • L — требуемая производительность приточной вентиляции, м3/ч;
  • N — количество людей;
  • Lнорм — норма расхода воздуха на одного человека:

в состоянии покоя — 20 м3/ч;

«офисная работа» — 40 м3/ч;

при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:

  • Для квартир — от 100 до 500 м3/ч;
  • Для коттеджей — от 1000 до 5000 м3/ч;

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП.

Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны, например, для Москвы она равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах допускается устанавливать калориферы, имеющие мощность меньше расчетной. Но при этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения:

  • Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
  • Максимально допустимый ток потребления. Величину тока (А), потребляемого калорифером, можно вычислить по формуле:

I = P / U, где

  • I — максимальный потребляемый ток, А;
  • Р — мощность калорифера, Вт;
  • U — напряжение питания: (220 В — для однофазного питания; для трехфазной сети расчёт несколько иной).

В случае, если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

T = 2,98 * P / L, где

  • T — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
  • Р — мощность калорифера, Вт;
  • L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов и загородных домов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной или паровой калорифер). В любом случае, если есть возможность, лучше использовать водяные или паровые калориферы. Экономия на обогреве в этом случае получается колоссальная.

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха.

Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве и стоят они дороже. Поэтому, при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.

Для бытовых систем приточно-вытяжной вентиляции обычно используются воздуховоды диаметром 160…250 мм или сечением 400х200мм…600х350мм и распределительные решетки размером 100200 мм — 1000500 мм.

Вентиляцию Вы можете заказать с монтажом «под ключ», позвонив по телефону в Москве: +7(499) 350-94-14. Осуществляем проектирование и поставку вентиляции по России. Письменную заявку просим Вас отправить на email mail@airclimat.ru или через форму на сайте.

Отправьте заявку и получите КП Подберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок.

Снижение категории А и Б посредством вентиляции

Не так давно мы закончили категорирование помещения ювелирной мастерской, которая располагалась в общественном здании. И, совершенно не желая этого лишили руководства этого предприятия спокойного сна, так как не только не смогли «не заметить» 20 литровый баллон с пропаном, используемый в производственном процессе этой ювелирки и присвоили этой мастерской категорию А, но и сообщили руководителю, что размещение помещений с повышенной взрывопожароопасностью не допускается в общественных зданиях.

Естественно руководство этой мастерской обратилось к нам с вопросом – а есть ли законные способы «снизить категорию». И мы подсказали им, что такой способ есть и что он «замаскированно» содержится в самом СП 12.13130.2009.

Величина избыточного давления взрыва газо и паровоздушной смеси, образуемой в помещении прямо пропорционально зависит от количества горючего в воздухе. И, соотвественно, уменьшая количество горючего, мы можем снижать ту самую величину, от которой зависит и опасность этого помещения.

Снизить эту величину можно за счет аварийной или общеобменной вентиляции, которая заберет опасные вещества из помещения и заменит их на воздух. При этом забирать всё горючее и не требуется, достаточно забрать его часть. Именно этот физический смысл подразумевается в пункте А.2.3 приложения А к СП 12.13130.2009 который вводит для этого коэффициент К и описывает три условия, при которых его можно применять.

Перечислим эти условия:

1. Наличие в помещении системы аварийной или общеобменной вентиляции;

2. Наличие в указанных системах резервных вентиляторов;

3. Наличие автоматики, которая запускает данную систему при превышении определенного порога (предельно допустимой взрывобезопасной концентрации, вычисление которой мы оставим для отдельной статьи).

Отсутствие любого из этих условия (а практически везде они отсутствуют) позволяет не учитывать их при проведении расчетов для определения категорий. Поэтому уменьшение массы на специальный коэффициент К, вводимый рассматриваемым пунктом приложения А к СП 12 в большинстве расчетов не используется. Поэтому кратность вентиляции, которая является ключевым параметром при определении коэффициента К в практике специалиста определяющего категорию обычно запрашивается.

Совершенно обратная задача возникает, когда нужно определить какие именно параметры должны быть у вентиляции, которая поможет снизить категорию. В этом случае нужно выполнить обратную задачу, не определить коэффициент К, исходя из известной кратности воздухообмена, а определить эту кратность, чтобы подобрать нужные вентиляторы.

Для этого сначала нужно определить при какой массе горючих веществ и материалов величина изменения давления не будет достаточной для присвоения этому помещению категории А. Обозначим эту массу как mтр и преобразуем для её вычисления (касательно индивидуальных веществ и материалов) формулу А.1 СП 12

\(\Delta P = (P_{max} — P_0 )\bigg(\frac{mZ}{V_{св} \rho_{г,п}}\frac{100}{C_{ст}}\frac{1}{К_{П}}\bigg),\)

и представим её в следующем виде:

\(m_{тр}=\frac{\Delta P V_{св}\rho_{г(п)}С_{ст}К_{n}}{100(P_{max}-P_{0})Z}\) (1)

Так как в методике определения категорий коэффициент К представляет собой отношения полной массы горючих веществ вышедшей в помещение при аварийной ситуации (которую мы уже вычислили, рассчитывая параметры взрыва при определении категории) к введенной нами величине mтр т.е. к той массе горючего газа, при которой величина избыточного давления взрыва позволит не относить помещение к взрывоопасной категории, то мы можем связать эти, уже известные нам величины, с параметрами вентиляции, через которые определяется коэффициент К по формуле А.5 СП 12.

\(К=АТ+1=\frac{m}{m_{тр}}\) (2)

Отсюда мы можем вычислить величину А – кратность воздухообмена в помещении, с привязкой к тому значению требуемой массы, которое определили по формуле (1).

Перенесем все известные члены в правую часть уравнения, а все неизвестные в левую.

\(АТ=\frac{m}{m_{тр}}-1\)

Так как Т – время выхода газа или испарения легковоспламеняющейся или горючей жидкости не может быть равно нулю, мы можем разделить на Т обе части уравнения

\(\frac{АT}{T}=\frac{m}{m_{тр}T}-\frac{1}{T}\)

Откуда:

\(A=\frac{m — m_{тр}}{m_{тр}T}\) (3)

Таким образом, всё, что нужно, чтобы определить кратность воздухообмена в помещении мы знаем. Единственное, необходимо определиться с какой продолжительностью будут горючие вещества поступать в помещение.

А вот с временем поступления горючих веществ есть вопросы. Если со временем поступления паров горючей жидкости всё более или менее понятно, то вот с выходом газа явно есть нормативная сложность, вытекающая из фактически возможного сценария разрушения аппарата содержащего газ.

Для жидкости, повторимся, всё просто. Правила вычисления времени полного испарения жидкости, которое мы используем определяя категорию, возможно учитывать и выбирая параметры вентиляции.

Для того, чтобы определить продолжительность поступления паров жидкости в помещении возможно воскользоваться формулой из работы

\(T=\frac{m_{ГЖ общ}}{W_{исп}S}\) (4)

Где mГЖобщ — обая масса всей горючей жидкости, обращающейся в помещении, S — площадь испарения, Wисп – интенсивность испарения, которую мы уже знаем, так как использовали проводя расчет категории и которая зависит от скорости воздушного потока в помещении, молярной массы вещества (которую можно определить в соответствующем разделе нашего сайта) и давлению насыщенных паров (также определяемому на странице онлайн-расчет по уравнению Антуана или формуле Сучкова).

\(W = 10^{-6} \eta \sqrt{M} P_{н}\)

В том случае, если полученное по формуе (4) время превышает 3600 секунд мы используем именно здачение 1 час ориентируясь на положение о том, что время полного испарения не может быть более часа, а если данное время меньше, чем пресловутый час – то используем полученное значение.

А вот в случае с газом – всё сложнее. В чем заключается трудность? В Методике СП 12.13130 указано, что время поступления горючего вещества Т, в формуле для определения коэффициента К – это время, определяемое определяемое в соответствии с пунктом А.1.2 Методики.

А этот пункт дает возможность определить это время только применительно к установкам, имеющим трубопроводы и запорные устройства. Время выхода горючего вещества из баллона, не имещего трубопроводов вообще не рассматривается.

Когда мы определяем категорию помещения с газом, то совершенно не важно, сколько он будет «поступать» в помещение из баллона, так как мы в любом случае берем всю его массу и считаем, что именно она будет образовывать газовоздушную смесь, способную к горению, в отличие от помещений с ЛВЖ и ГЖ, в которых время испарения жидкости, т.е. образования паровоздушной смеси, дает нам возможность определить массу этих самых паров. А вот при определении кратности воздухообмена для помещений с газовыми баллонами это время приобретает критическое значение.

В примерах из пособия видно, что в таком случае коллеги берут почему-то время выхода газа 3600 секунд, как время полного испарения жидкости. Но почему это же время берется и для газов?

Совершенно непонятно, ведь гораздо худший сценарий аварии – мгновенное разрушение баллона с газом, и надо было бы учитывать при проектировании систем защиты именно его.

Может быть поэтому в работах в примерах определения категории помещений с газовыми баллонами аварийная вентиляция вообще не учитывается.

Как поступить в данном случае специалисту перед которым стоит задача разработать мероприятия для снижения категории?

Можно (и полагаю нужно) не использовать данный способ снижения категории для помещений, содержащих баллоны с газом, так как невозможно спрогнозировать точное время выхода газа из сосуда при его разрушении, и использовать этот метод следует только для тех помещений, в которых газ поступает по трубопроводам, имеющим соответствующие системы аварийного отключения.

Можно идти пути, проторенному Корольченко А.Я. и Загорским Д.О. и представить, что газ будет поступать в помещение 3600 секунд и сослаться на имеющийся пример, один из авторов которого, является крупным ученым ВНИИПО и МГСУ.

Можно оставаться формалистом и взять 300 секунд (тем более, эта величина приближена к реальности при истечении газа из незначительно поврежленного баллона).

Можно брать «по худшему варианту» — мгновенное разрушение баллона и поступление газа в помещение за 1 секунду. Но тогда кратность воздухообмена в помещении будет, будет в триста раз больше, чем если бы мы брали время выхода 300 секунд и в 3600 раз больше, чем в том примере, который указан в учебном пособии .

В любом случае этот вопрос требует дополнительного обсуждения и запроса разъяснений во ВНИИПО МЧС России, как к автором методики.

Но, так или иначе это всё величины формулы (3) известны, а это значит, что кратность воздухообмена в помещении мы получим и, как следствие, зная объем помещения, сможем подобрать под данную кратность производительность вентилятора.

Подберем, не забывая при этом, что помимо кратности воздухообмена в помещении, существуют еще три нормативные условия (перечисленные нами ранее) для того, чтобы снизить категорию помещения используя вентиляцию от взрывоопасной до пожароопасной, и то, что формула (1) действительна только для индивидуальных веществ.
Для цитирования: П.Ю. Князев «Снижение категории А и Б посредством вентиляции» «Лаборатория процессов горения и динамики пожара». — Электрон. дан. — Режим доступа: //firecategory.ru/articles.php?id=53, свободный Размещено 08 декабря 2018 года

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх