Ветрогенераторы для дома

Вопрос ветроэнергетики в наше инновационное время интересует очень многих. Те, кто хоть раз посещал Европейские страны на своем авто, наверняка видели огромные ветропарки.
Сотни генераторов встречаются по пути.

Наблюдая такую картину, многие начинают верить, что получение эл.энергии при помощи ветра, весьма перспективное и выгодное занятие. Мудрые европейцы ошибаться то не могут.

При этом, почему-то игнорируется факт, что в других местах той же Европы, подобных ветроэлектростанций практически нет. С чего бы это?
Вот именно об этом, когда, где и как ветряки использовать выгодно, а когда нет, и пойдет речь в статье.

Автономность

Наверняка после очередного подорожания электроэнергии, вы задумывались об установке у себя на участке ветрогенератора. Тем самым, обеспечив если не всю, то большую часть своих потребностей в электричестве.

Некоторые даже подумывают таким образом стать независимыми от электросетей. Насколько это реально и возможно? К сожалению, для 90% владельцев частных домов, эти мечты так и останутся мечтами.

И дабы вы не тратили понапрасну свои деньги, расскажем с выкладкой всех цифр, почему это именно так.

Скорость ветра

К сожалению, в нашей стране не так много регионов, где скорость ветра находится хотя бы на уровне 5-7 метров в секунду. Берутся данные в среднем за год. В подавляющем большинстве широт, пригодных для проживания, эта самая скорость равняется максимум 2-4 м/с.

Это говорит о том, что ваша ветроустановка большую часть времени, элементарно не будет работать. Для стабильной выработки электричества, ей нужен ветер около 10 м/с.

Если в вашем районе ветер 7м/с, то генератор будет работать максимум на 50% от своего номинала. А если всего 2м/с, то и вовсе на 5%.

Фактически за час, 2квт генератор подарит вам не более 100Вт.

Еще вы столкнетесь с другой проблемой ветра, о которой умалчивают производители. Около земли, его скорость гораздо меньше чем наверху, там где ставятся промышленные установки высотой 25-30м.

Вы же свой агрегат будете монтировать максимум на десяти метрах. Поэтому даже не ориентируйтесь на таблицы ветров с разных сайтов. Эти данные вам не подходят.

Производители скромно умалчивают, что для их карт ветроресурсов, замеры производятся на высоте от 50 до 70 метров! К тому же там не учтены данные по турбулентности, завихрениям.

Попробуете задрать повыше чем 10м, обязательно задумаетесь о молниезащите. Наэлектризованные трением воздуха лопасти, очень вкусная приманка для разрядов!

К тому же, почему-то все беспокоятся только о таком параметре, как скорость ветра, и при этом забывают про его плотность или давление. А разница для энергетики весьма существенная. Зависимость выработки электроэнергии от давления ветра непропорциональная.

Так, при увеличении давления ветра в два раза, генерируемая мощность возрастает в восемь раз!

Кроме того, есть определенное лукавство в указанных технических характеристиках генераторов.

Верить им конечно можно, но только для идеальных условий. Потому что:

  • показания эти снимаются в аэротрубе

  • и в ламинарном потоке при неизменном направлении и повышенной плотности

У вас же на дачном участке скорость ветра может быть такой, что не получится и вал прокрутить, не то что вырабатывать энергию.

И это весной или осенью. Именно в этот период происходят наиболее активные перемещения воздушных масс.

Не забывайте, что ветряк работает не в режиме холостого хода вертушки, а должен раскрутить ротор генератора в окружении неодимовых магнитов.

И это только до тех пор, пока электрический потенциал ветряка ниже напряжения АКБ. При достижении напряжения достаточного для начала заряда, аккумулятор превращается в нагрузку.

Если применить тихоходные конструкции с вертикальной осью вращения, то здесь уже присутствует повышающий редуктор. Вы пытались раскрутить повышающий редуктор? Такая конструкция усложняется, увеличивается вес, парусность, стоимость.

Даже на маяках Северного флота, учитывая там постоянные ветра и полярную ночь, специалисты предпочитают использовать солнечные батареи. На вопрос почему так, отвечают по-простому – проблем меньше!

Аккумуляторные батареи для ветряков

Большие промышленные ветротурбины могут передавать энергию напрямую в сеть, минуя всякие аккумуляторы.

А вот вы без них обойтись никак не сможете. Без АКБ не будет работать ни телевизор, ни холодильник. Даже освещение будет светить урывками, в зависимости от порывов ветра.

При этом за 12-15 лет работы генератора, вы обязаны будете сменить 3-4 комплекта АКБ, тем самым вдвое увеличив свои начальные расходы. Причем мы берем чуть ли не идеальный вариант, когда аккумуляторы будут разряжаться не больше половины от своей емкости.

Конечно вы можете купить дешевые модели АКБ, но затраты от этого не станут меньше. Просто поход в магазин за новыми батареями будет осуществлен не 4 раза, а уже 8.

Где лучше установить

Еще о чем стоит серьезно задуматься — это наличие свободного места. Причем по площади оно может уходить на 100 и более метров в каждую сторону от мачты.

Ветер должен свободно гулять по лопастям, и без помех их достигать со всех сторон. Получается, что вы должны проживать либо в степи, либо возле моря (лучше непосредственно на его берегу).

Идеальное место будет на вершине холма. Где с позиции аэродинамики, воздушный поток уплотняется с соответствующим увеличением скорости и давления ветра.

О соседях рядом забудьте. Их сады и двух-трехэтажные особняки, здорово “попьют вашу кровушку”, каждый раз перекрывая попутный ветерок. Также как и соседние лесопосадки.

Те же самые промышленные ветряки, не располагают непосредственно друг за другом, а монтируют их по диагонали. Каждый последующий, не должен закрывать предыдущий.

Цена за 1квт мощности

4-я причина – высокая цена. Не ведитесь на цены продавцов в прайс листах. В них никогда не показывается реальная стоимость всего необходимого оборудования.
Поэтому цены всегда умножайте на 2, даже при выборе так называемых готовых комплектов.

Но и это еще не все. Не забудьте про эксплуатационные расходы, доходящие до 70% от стоимости ветряков. Попробуйте поремонтировать генератор на высоте, либо каждый раз демонтировать и разбирать-собирать мачту.

Еще не забудьте про периодическую замену АКБ. Поэтому не рассчитывайте, что ветряк может вам обойтись в 1 доллар за 1квт эл.энергии.

Когда вы посчитаете все реальные затраты, окажется что каждый киловатт мощности такого ветрогенератора, обошелся вам минимум в 5 баксов.

Срок окупаемости и расчет экономии

Пятая причина, неразрывно связана с первыми четырьмя. Это срок окупаемости затрат.

Для вашей индивидуальной ветровой установки этот срок – НИКОГДА.

Стоимость ветряка, мачты и доп.оборудования для 2-х киловаттных качественных моделей будет доходить в среднем до 200 тыс. рублей. Производительность таких установок – от 100 до 200квт в месяц, не более. И это при хороших погодных условиях.

Даже осадки снижают мощность ветряков. Дождь на 20%, снег – на 30%.

Вот и получается вся ваша экономия – это 500 рублей. За 12 месяцев непрерывной работы, набежит уже чуть больше – 6 тысяч.

Но если вспомнить начальные траты в 200тыс., то вернете вы их через тридцать два года! И все это без учета эксплуатационных затрат. А если прикинуть, что средний срок службы хорошего ветряка – около 20лет, то получается, что он окончательно и безвозвратно поломается еще до того, как выйдет на окупаемость.

При этом, 2-х киловаттный агрегат не будет закрывать на 100% ваши потребности. Максимум на треть! Если захотите целиком все подключить от него, то берите 10-ти киловаттную модель, не меньше. Срок окупаемости от этого не изменится.

Но тут уже будут совсем другие габариты и масса.

И закрепить его просто так на трубе через чердак своей крыши, точно не получится.

Однако некоторые все равно убеждены, что из-за бесконечного подорожания электроэнергии, ветрогенератор в один прекрасный момент, по любому станет выгоден.

Когда стоит покупать ветряк

Безусловно, электроэнергия с каждым годом дорожает. К примеру 10 лет назад, ее цена была на 70% ниже. Давайте проведем примерные расчеты и выясним перспективу выхода на окупаемость ветряка, с учетом резкого удорожания электричества.

Рассматривать будем генератор мощностью 2квт.

Как мы уже выяснили ранее, стоимость такой модели около 200тысяч. Но с учетом всех доп.расходов, нужно умножить ее на два. Получится минимум 400 тыс.руб. затрат, при сроке службы в двадцать лет.

То есть, за год получается 20 тысяч. При этом по факту, за этот год агрегат выдаст вам максимум 900 квт. Из-за коэфф. установленной мощности (он для маленьких ветряков не превышает пяти процентов), за месяц вы накрутите 75квт.

Даже если взять 1000 квт в год для простоты расчетов, стоимость 1квт/ч полученная от ветряка, для вас составит 20 рублей. Если и предположить что электричество от ТЭС подорожает в 4 раза, то случится такое не завтра, и даже не через 5 лет.

Поэтому стоимость электричества от индивидуального ветрогенератора, по любому будет выше.

Какие выводы можно сделать из всего вышесказанного?

Ветрогенератор в нынешних российских условиях – это убыточный агрегат.

Чтобы хоть как-то обосновать его применение, цена электроэнергии уже сегодня должна доходить до 30 рублей за 1 квт.

Использование ветряка может быть обосновано в двух случаях:

  • у вас поблизости нет внешних электросетей или вам не дают к ним подключаться
  • у вас есть дизель генератор, но доставить для него топливо нет возможности

При этом, устанавливаться ветряк должен в районе со средне годовой скоростью ветра не менее 5-6 м/с. Только в этих случаях ветроустановка будет хорошей альтернативой.

Фактически, в таких условиях вы просто вынуждены выбрать из всех зол наименьшее. При этом, не верьте в суперэффективность других моделей вертикальной или шарообразной формы, собранных на неодимовых магнитах.

Конечный результат будет всегда один. Энергия, которую производит ветряк, зависит только от:

  • скорости ветра
  • площади, которую описывают лопасти

Поэтому, если вы уже подключены к электросети, не ищите себе лишних приключений и головных болей. Выгоды никакой вы не найдете, по крайне мере на сегодняшний день.

Какие ветряки выбирать

Ну а тем, кто живет далеко от подстанций и ВЛ-0,4кв, стоит приобретать наиболее мощные модели ветряков, какие вы только можете себе позволить. Так как от той мощности, что указана на картинках, вам достанется не более 15%.

Другая категория потребителей, вполне заслужено делает выбор не в пользу китайских заводских моделей, а наоборот, предпочитает самодельные ветряки от мастеров самоучек. Свои выгоды в этом тоже имеются.

В большинстве своем, изобретатели подобных девайсов, это грамотные и ответственные ребята. И практически в 100% случаев, без проблем им можно вернуть установку, если что-то пошло не так, или ее нужно подремонтировать. С этим проблем уж точно не будет.

У промышленных китайский ветряков, внешний вид конечно посимпатичнее. И если вы все-таки решились прикупить именно его, сразу после проверки электродрелью, сделайте профилактический ремонт и замените китайский металлолом на подшипники с качественной смазкой.

Если поблизости от вас есть крупные гнездовья птиц, не помешает закупить дополнительный комплект лопастей.

Птенцы иногда попадают под раздачу крутящейся “мини мельницы”. Пластиковые лопасти ломаются, а металлические гнутся.

А закончить хотелось бы мудростью от тех пользователей, которые не послушались всех доводов и вплотную столкнулись со всеми вышеописанными проблемами. Запомните, самый дорогой флюгер для дома – это ветрогенератор!

Поделись с друзьями:

Выгоден ли ветрогенератор? Расчет окупаемости устройства в условиях российской действительности

Дата публикации: 9 августа 2019

Сторонникам альтернативного энергоснабжения сегодня предлагается разнообразие решений – от солнечных батарей до ветрогенераторов, производительность которых достигает несколько тысяч киловатт-часов в год. Последний вариант пользуется заслуженной популярностью. Наши сограждане предпочитают брать пример со стран Европы, где использование ветровой энергии вышло на промышленные масштабы и в некоторых областях практически заменило централизованную подачу электроэнергии. Однако в отличие от государств северного европейского побережья климат в России имеет свои особенности. И их необходимо учитывать при выборе и расчете окупаемости ветрогенератора, чтобы дорогостоящее устройство оправдало вложения и принесло ощутимую пользу.

Особенности применения ветрогенераторов

Чтобы устройство работало на полную мощность и сумело превзойти свои номинальные характеристики, его рекомендуется устанавливать на большой высоте – около 30-40 м, где порывы ветра сильнее, чем у поверхности земли. В условиях плотной застройки выполнение данного требования проблематично. Поэтому расчет высоты нужно делать, добавляя около 4-5 м от уровня поверхности самого высокого здания возле площадки под генератор. Оптимальное же место его монтажа – степь или участок без растительности радиусом около 200 м относительно точки установки.

Учитывая непостоянный характер ветров, ветрогенератор лучше использовать для питания приборов и техники, которая не предъявляет особых требований к качеству энергоснабжения. А вот подключать к устройству напрямую чувствительные приборы категорически не рекомендуется. Вследствие частых скачков напряжения они быстро выйдут из строя. Решением проблемы может стать использование выпрямителя электроэнергии, выбор и монтаж которого следует выполнять с учетом рекомендаций производителя.

Разработчики альтернативных источников энергоснабжения настоятельно советуют использовать возможности системы бесперебойного питания. В ее функции будет входить накопление запасов «лишней» электроэнергии и ее подача в дом во время продолжительного безветрия, когда генератор находится в режиме вынужденного простоя. Основа системы – аккумуляторная батарея, для своевременной подзарядки которой необходимо подключить в сеть выпрямитель. Он выровняет показатели получаемой энергии и снизит риск перезарядки в случае резкого скачка напряжения при увеличении силы ветра. А чтобы превратить постоянный ток от генератора в переменный, подходящий для питания бытовых устройств, в систему монтируют инвертор.

Если для региона характерны многодневные периоды безветрия, в систему бесперебойного питания рекомендуется подключить бензиновый или дизельный генератор. В случае полной разрядки аккумулятора и временного бездействия ветряка устройство обеспечит подачу в дом требуемого количества электроэнергии, и перебоев с электроснабжением удастся избежать.

Расчет окупаемости ветрогенератора

Вложив в приобретение устройства сотни тысяч рублей, новый владелец вправе рассчитывать на его очевидную выгоду и окупаемость ветряка. Попробуем рассчитать цену киловатта электроэнергии на стандартной модели генератора мощностью 4-5 кВт. При скорости ветра 4-5 м/с устройство даст около 350 кВт за месяц, или 4200 кВт за год. Срок службы генератора – около 25 лет, стоимость большинства моделей устройств – в пределах 280 000 рублей. Делим стоимость на произведение годовой выработки и срока эксплуатации:

280 000 / 4200*25 = 2,666 рубля

Таким образом, стоимость киловатта энергии окупаемого ветрогенератора будет составлять чуть более 2,5 рубля. По сравнению с актуальным уровнем цен выгода есть, но она не так велика, как хотелось бы при использовании альтернативных источников энергии.

Приведенные выше расчеты дают другой результат, если скорость ветра составит около 7-8 м/с. В месяц ветрогенератор мощностью 6-7 кВт даст около 780 кВт или в год 9000 кВт. При стоимости таких ветряков около 310 000 получим следующий результат:

310 000 / 9000*25 = 1,3722 рубля

Такая стоимость – очевидная выгода, особенно для энергоемких объектов.

Подводя итоги вышесказанного: выгоден ли ветрогенератор

Приведенные результаты наглядно доказывают окупаемость расходов на приобретение и запуск ветрогенератора. Тем более что:

  • Стоимость киловатта постоянно растет вследствие инфляции.
  • При использовании ветряка объект становится энергонезависимым.
  • «Излишки» выработанной электроэнергии могут накапливаться и храниться на случай безветренной погоды благодаря системе бесперебойного питания.
  • Немало объектов, удаленных от сети централизованного энергоснабжения, вынуждены существовать в условиях отсутствия электричества, поскольку их подключение нерентабельно.

Итак, ветрогенератор выгоден. Его приобретение для энергоемких потребителей без электроснабжения экономически целесообразно. Гостиница за городом, сельскохозяйственная ферма или животноводческое предприятие, коттеджный поселок – в любом случае расходы на подключение альтернативного источника электроснабжения будут оправданы. Остается только подобрать подходящую модель ветряка и установить ее, руководствуясь рекомендациями компании-производителя. Мощность устройства должна соответствовать средней скорости ветра в вашем регионе. Уточнить ее можно по специальной карте ветров или по данным местной метеостанции.

Обратите внимание: для ветрогенераторов китайских производителей номинальная мощность устройства рассчитана с учетом скорости ветра на уровне 50-70% от уровня земли. Установить ветряк на такой высоте проблематично. Слишком высокая мачта стоит дорого, а к ее прочности предъявляются строгие требования. Кроме того, на указанной высоте порывы ветра образуют сильные вихревые потоки. Они не только замедляют работу ветрогенератора, но и могут стать причиной поломки лопастей. Решение – установка устройства на высоте 30-35м, что обеспечит доступ к сильному ветру, но исключит поломку ветряка.

Типы ветротурбин, их мощность, эффективность

Ветроэнергетические установки (ВЭУ) преобразует кинетическую энергию ветра в механическую или электрическую энергию, удобную для практического использования. ВЭУ производят электрическую энергию для бытовых или промышленных нужд. Какие ветротурбины наиболее эффективные и экономически выгодные? Как определить мощность ветроустановки по размерам ветроколеса? Ответы на эти вопросы см. ниже.

Какие бывают ветротурбины?

Виды ветроустановок по ориентации оси вращения

Ветротурбины отличаются по ориентации оси вращения по отношению к направлению ветра и по типу ветротурбины.

По ориентации оси вращения ветротурбины подразделяются на ветроустановки с вертикальной осью вращения и ветроустановки с горизонтальной осью вращения. Ветроустановки с горизонтальной осью составляют около 95% всех ветроустановок, подключенных к сетям энергосистем.

Ветротурбины также принципиально отличаются по тому, какую силу они используют для преобразования в механическую — силу давления ветра или подъемную силу. От этого свойства существенно зависит КПД ветротурбины. Теоретические КПД равны: для первого типа 0,22, для второго — 0,59 (согласно теории Жуковского Бетца).

Ветротурбина чашечного типа (использует силу давления ветра)

Ветроустановки, использующие силу давления ветра, имеют право на жизнь, но наукой и опытом давно доказана их очень низкая эффективность по сравнению с пропеллерными или другими, использующими подъемную силу крыла. Это примерно как гребные колеса у дореволюционных пароходов по сравнению с обычным винтом любого современного корабля или катера. Такие ветротурбины имеют большую материалоемкость и, соответственно, высокую удельную стоимость.

Ортогональные ветроустановки с вертикальной осью вращения, которые используют подъемную силу крыла, имеют КПД немногим менее пропеллерных, поэтому их эффективность также высока. Но у таких вертикально-осевых турбин есть другой недостаток — они не могут самостоятельно начать вращение, и для их запуска их надо раскрутить — или от сети, или с помощью другой ветротурбины, имеющей стартовый момент вращения (часто используется турбина Савониуса для этих целей).

Ветротурбина Дарье Идея этого ветрогенератора была предложена французским изобретателем Дарье в 1920 году. Но вплотную заниматься разработкой этой идеи начали только в 1970 году. В настоящее время ветрогенератор Дарье считается главным конкурентом ветрогенераторов с обычными ветроколесами.
Его особенность состоит в том, что он использует подъемную силу аэродинамики лопастей, которые в поперечнике имеют форму крыла. Стартовый вращательный момент такого ротора небольшой, а быстроходность высокая. За счет этого его мощность по отношению к собственной массе наибольшая. Это позволяет иметь одну или больше лопастей, и несколько разновидностей формы ротора.
Мощность нынешних ветрогенераторов намного больше, чем у их предшественников – ветряков. Лопасти колес очень легкие и одновременно прочные. Они изготовляются из синтетических материалов или стали. Их производительность зависит не только от скорости ветра, но и способности его улавливать. Увеличение вращения пропеллера вдвое, дает увеличение производства количества электроэнергии в четыре раза.
Конструкция любого вида ветровой электростанции, независимо от мощности, практически одинаковая. Она состоит из мачты, контейнера для генератора и редуктора с ветроулавливателем. Мачта может быть нескольких типов: обычная на растяжках, телескопическая или монолитная. Подвижное крепление контейнера для генератора и ротора позволяет пропеллеру быть постоянно развернутым к фронту ветра.

Вертикально-осевые ветротурбины (ВОВТ), как правило, менее эффективны, чем горизонтально-осевые ветротурбины (ГОВТ), по следующим причинам:

  • Лопасть испытывает сопротивление при вращении, т.к. на части траектории она должна двигаться противоположно направлению ветра
  • ВОВТ часто установлены на более низкой высоте (земля или крыша здания), где скорость ветра меньше.
  • ВОВТ имеют проблемы, связанные с вибрацией, например, шум и более быстрый износ и разрыв опорной конструкции (так как воздушный поток имеет большую турбулентность на низкой высоте).
  • Нагрузка на электрогенератор от массы ветротурбины, если она установлена на одном валу с электрогенератором.

Зависимость КПД ветротурбины от ее типа и быстроходности

Важным параметром ветроколеса является быстроходность. Быстроходность — это отношение линейной скорости лопасти к скорости ветра. У ветротурбин, использующих силу давления ветра, быстроходность всегда меньше 1. К таким ветротурбинам относятся карусельные, чашечные и другие аналогичные типы ветротурбин. Ротор Савониуса имеет быстроходность немного больше единицы потому, что кроме силы давления ветра в нем используется еще и реактивная сила. У ветротурбин, использующих подъемную силу крыла, скорость лопасти больше скорости ветра.

Как это не парадоксально, но чем меньше лопастей в ветроколесе, тем выше его КПД. Это проверено как теоретическими исследованиями, так и продувками в аэродинамической трубе, хотя разница между 1, 2, 3 лопастями незначительна. Однако, с уменьшением количества лопастей также уменьшается момент страгивания и ухудшается работа при низких скоростях ветра. У однолопастных ветротурбин также есть серьезная проблема с балансировкой и надежностью ветроколеса.

Ветрогенераторы с 2-3 лопастями относятся к быстроходным с более высоким КПД и частотой вращения, но при этом у них низкий стартовый момент вращения ротора. Поэтому быстроходные ветрогенераторы выгодно объединять с электрическим генератором, так как электрический генератор имеет высокую частоту вращения (для улучшения массогабаритных характеристик) и низкий пусковой момент. Тихоходные многолопастные ветротурбины обычно работают в связке с водяными насосами, у которых большой момент запуска и меньшая частота вращения. Быстроходные 3-х лопастные ветрогенераторы получили большее распространение, чем 1-2-х лопастные, несмотря на их высокую стоимость. 3-х лопастным ротором генерируется меньше вибрация и выглядит он более эстетично. Поэтому во всем мире оптимальным количеством лопастей горизонтально-осевой ветротурбины признано 3.

От чего зависит мощность ветротурбины?

Мощность ветротурбины зависит от скорости ветра, площади ометаемой поверхности и эффективности ветротурбины. Это основные факторы, влияющие на вырабатываемую ветротурбиной мощность (и, соответственно, энергию). На выработку также влияет турбулентность ветропотока, плотность воздуха, равномерность распределения скорости ветра по ометаемой площади.

Скорость ветра — важнейший элемент в проектировании и использования ветроустановки. Вырабатываемая мощность пропорциональна кубу скорости ветра и квадрату диаметра ротора. Это означает, что при удвоении скорости ветра возможная вырабатываемая мощность увеличивается в 8 раз. Так, ветроустановка, работающая при средней скорости 6 м/с, генерирует мощность на 44% большую, чем при скорости 5 м/с. Если скорость ветра определяется местом, где сооружается ветроустановка, то диаметр ее ротора — это элемент конструкции, величина которого зависит от многих расчетных параметров. Чаще всего решается обратная задача: задается проектируемая мощность ВЭУ и далее определяется требуемый диаметр при определенной расчетной скорости.

Формула мощности ВЭУ выглядит следующим образом:

P=½·ρ·A·V3·Cp·ηг·ηм, Вт

где ρ= 1,22 — плотность воздуха (стандартная), кг/м3
V — скорость ветра, , м/с
ηг·ηм— коэффициенты полезного действия генератора и механической передачи между ветроколесом и генератором,
Cp — коэффициент использования энергии ветра (КИЭВ), зависящий от профиля лопастей и других режимных параметров, предельное значение которого равно 0,593, а достигнутое в эксплуатации- 0,4-0,45,
А — площадь ветротурбины, в случае пропеллерной турбины вычисляется по формуле:

А=¼π·D2, м2

где D, м- диаметр ротора,π=3,14.

Диаметр ротора ВЭУ по мере возрастания мощности ветроустановки от 1 до 3000 кВт увеличивается от 2 до 100 м, а высота башни от 8 до 100 м. Для ВЭУ выше 150 кВт диаметр ротора и высота башни примерно равны.

Скорость ветра увеличивается с высотой над уровнем земли, поэтому чем выше мачта ветротурбины, тем более производительной будет ветроустановка.

Не стоит увлекаться поиском ВЭУ, начинающих работать на малых скоростях ветра — до 3 м/с, так как на этих скоростях ветра его энергия ничтожно мала. Например, для ВЭУ с диаметром винта 5 м вырабатываемая мощность при скорости ветра 2 м/с будет менее 30 Вт, причем половина этой мощности уйдет на всякие потери в механических элементах, генераторе и контроллере, а оставшиеся 15 Вт — это мизер для аккумуляторов, рассчитанных на номинальную мощность 5 кВт. Так что, кроме наслаждения от вида вращающегося ветроколеса, вы больше ничего не получите.

Очень важным параметром в проектировании ВЭУ является коэффициент использования установленной мощности (КИУМ), дающий представление об эффективности работы ВЭУ. Это отношение средней выработки генерирующего устройства к максимально возможной. Большинство современных ВЭУ работают с коэффициентом использования установленной мощности от 25 до 35%. Электростанции, работающие на невозобновляемых источниках энергии, имеют коэффициент использования установленной мощности от 40 до 80%. Лучшие ветроустановки в хороших ветровых условиях работают с коэффициентом 0,5. На КИУМ влияет кроме среднегодовой скорости ветра также и время, которое затрачивается на техническое обслуживание и ремонт ветроустановки.

Ветроустановка состоит из следующих основных подсистем и узлов:

  1. ротор или лопасти, который преобразует энергию ветра в энергию вращения вала,
  2. кабину или гондолу, в которой обычно расположен редуктор ( некоторые турбины работают без редуктора),
  3. генератор и другие электромеханические системы,
  4. башню или мачту, которая поддерживает ротор и кабину,
  5. электрическое и электронное оборудование, такие как панели управления, электрические кабели, оборудование заземления, оборудование для подключения к сети, система молниезащиты, система накопления электроэнергии и ее стабилизации, и др.

Как выбрать ветрогенератор?

А. Ортогональный В. С горизонтальной осью С. Геликоидный ротор или Ротор Горлова D. Многолопастной ротор E. Ротор Дарье

Распространенная ошибка — выбирать мощность ветроустановки по пиковой мощности нагрузки. Ветрогенератор, также как и солнечные батареи, является источником энергии, а не мощности. Поэтому расчет ветроэнергетической системы ведется в несколько шагов, и желательно, если это сделает специалист.

Для выбора ветрогенератора сначала Вам необходимо определить своё потребление в кВт*часах в месяц, пиковую (суммарную) мощность всех приборов и постараться узнать среднегодовую и среднемесячные скорости ветра в Вашей местности. Последний параметр не всегда возможно определить с достаточной точностью. Даже если вы получите данные по многолетним скоростям ветра от ближайшей метеостанции, не факт, что в месте установки вашей ветротурбины будет именно такая скорость ветра. Поэтому для больших ветростанций необходимо обязательно проводить мониторинг скорости ветра хотя бы в течение одного года, а затем сделать корреляцию полученных данных с данными от ближайшей метеостанции. Для малых ветроустановок такой путь слишком дорог, и очень часто малые ВЭУ устанавливаются на страх и риск хозяина. В таких случаях обычно, если ветра недостаточно, признается, что решение об установке ветротурбины было ошибочным. Если же ветер хороший, то следующим шагом обычно является увеличение мощности малой ветростанции.

Для получения электричества в необходимом объёме нужно понимать, что количество вырабатываемой ветряком энергии напрямую зависит от ометаемой ветротурбиной площади или максимального сечения ветротурбины. Для минимального обеспечения пары лампочек, ТВ, холодильника, электрочайника — диаметр ветряка должен быть не менее 2,5 метров при средних по силе ветрах.

Особое внимание стоит уделять не только мощности ВЭУ (именно ВЭУ, а не инвертора, входящего в комплект), но и при какой скорости ветра эта мощность может быть получена. Некоторые продавцы представляют завышенные показатели. Для этого не поленитесь подсчитать по несложной формуле мощность, которую способен отдать ветряк с винтом конкретного диаметра. Эта мощность практически зависит только от скорости ветра V и диаметра ветротурбины D, а все остальные факторы — количество лопастей, их вес, площадь, профиль, крутка, генератор, подшипники и т. д. — второстепенные и большой погрешности не дают.

Упрощенная формула расчета реально отдаваемой ветром мощности в зависимости от скорости ветра и диаметра винта:

Р = D2V3/7000, кВт,

с точностью ±20% (зависит от КПД турбины и генератора). +20% — идеальная ВЭУ, ее цена увеличится в 2-3 раза. -20% — первый ветряк энтузиаста-любителя. При равной мощности ВЭУ выбирайте ту, у которой диаметр ветроколеса больше.

Некоторые производители представляют результаты продувок своих ветроэлектрических установок по мощности в аэродинамической трубе. Это хорошо, и говорит о серьезном подходе к делу. Однако, необходимо учитывать, что мощность в аэродинамической трубе и в природе на ветру отличаются примерно на 10-30% вследствие идеализации воздушного потока в трубе. Реальный поток ветра имеет турбулентности, которые существенно ухудшают параметры ветроколеса.

Мощность, вырабатываемая ветрогенератором, пропорциональна кубу скорости ветра. Это означает, что мощность ветрогенератора на слабых ветрах (даже если он вращается) очень мала. Но, с усилением ветра, идет резкое нарастание мощности. А поскольку ветер на практике дует с постоянной скоростью и направлением только в аэродинамической трубе, понятно, что мощность, вырабатываемая ветрогенератором, является постоянно меняющейся по времени величиной. Поэтому любая энергетическая система с использованием ветрогенератора в качестве источника энергии должна иметь стабилизирующее звено.

В малых автономных системах роль такого звена обычно играет аккумуляторная батарея. Если мощность ветрогенератора больше мощности нагрузки, батарея заряжается. Если мощность нагрузки больше – батарея разряжается. Из этого следует следующая важная особенность ветрогенератора, как источника мощности: если большинство других источников выбираются по мощности пиковой нагрузки, ветрогенераторы следует выбирать, исходя из величины потребления электроэнергии в месяц (или в год, как кому нравится).

Проиллюстрируем это на примере. На берегу моря, где средняя скорость ветра приближается к 6 м/с, стоит домик, куда приезжает семья из трех человек на выходные. Электрооборудование включается тоже только на выходные. В день потребление достигает 15 кВт*ч, при этом пиковая нагрузка – до 3 кВт. Следовательно, в месяц потребление энергии равно 120 кВт*ч. При среднегодовой скорости ветра 6 м/с выработку 120 кВт*ч в месяц может обеспечить небольшой 700-ваттный ветрогенератор. Кроме того, для аккумулирования энергии в течение 5 дней потребуется батарея большой емкости, и инвертор (который преобразовывает постоянное напряжение батареи в стандартное переменное) мощностью 3 кВт, чтобы обеспечить пиковые нагрузки.

Как можно видеть, в каждом из вышеописанных случаев мощность ветрогенератора отличается в разы от пиковой мощности нагрузки. Мощность пиковой нагрузки определяет мощность преобразователя. Сам ветрогенератор определяет только величину выработки в определенный временной промежуток при определенной среднемесячной скорости ветра. Кроме средней скорости ветра, существуют более подробные вводные данные для оценки ветровых ресурсов, называемые параметрами распределения Вейбулла, которые отражают распределение длительности ветра определенной силы для данного места, они используются при проектировании ветропарков мощностью в десятки МВт.

В каких случаях выгодно использовать ветрогенератор?

Ветровые электростанции установки наиболее выгодно использовать в местах, где невозможно провести общую электросеть, или соединение является очень затратным, а также — в местах с частыми отключениями электричества. Ветровые электростанции смысл устанавливать, если в месте становления среднегодовая скорость ветра превышает 3 м/с.

В общем случае, при среднегодовой скорости ветра более 4 м/с на высоте 10 м (на этой высоте на метеостанциях устанавливаются анемометры — приборы, измеряющие скорость ветра) возможно эффективное применение ветроустановок, а ветер с меньшей скоростью годится для водоподъемных устройств.

Наиболее экономически выгодное применение ВЭУ имеет место, если ветротурбины объединены в группы. Их называют ветроэлектрическими станциями (ВЭС), а за рубежом «ветровыми фермами» (wind farm). Их мощность колеблется от сотен киловатт до сотен мегаватт. Ветроустановки большой мощности не предназначены для автономной работы или работы параллельно друг с другом. Поэтому как только отключается ЛЭП (линия электропередачи), связывающую ВЭУ с энергосистемой, останавливаются и ВЭС. Обычно при проектировании обеспечивается связь с двумя ЛЭП с разных точек энергосистемы. Для одиночных ВЭУ и небольших ВЭС, питающих определенную нагрузку, нужно иметь резервный источник электроснабжения (дизель-генератор, газотурбинная установка, солнечные батареи).

Хорошими ветровыми условиями в России обладают следующие субъекты РФ: Архангельская, Астраханская, Волгоградская, Калининградская, Камчатская, Ленинградская, Магаданская, Мурманская, Новосибирская, Пермская, Ростовская, Сахалинская, Тюменская области, Краснодарский, Приморский, Хабаровский края, Дагестан, Калмыкия. Карелия, Коми. Ненецкий автономный округ, Хакасия, Чукотка, Якутия, Ямало-Ненецкий автономный округ.

По опыту эксплуатации ветропарков, установленных в Российской Федерации, их КИУМ в среднем равен 12%. Как видим, российские ветропарки имеют невысокий КИУМ. Это связано как с невысокой среднегодовой скоростью ветра в местах их установки, так и с большим временем простоя.

Какие нужны документы и разрешения для установки ветрогенератора?

Импортируемые ветроустановки не подлежат сертификации. Вы можете без проблем установить на своей территории для себя ветрогенератор мощностью до 75 кВт и высотой до 30 метров для личного некоммерческого использования. Для этого не нужны никакие документы, справки или разрешения.

Обсуждения по теме с нашего форума

  • Нужно ли разрешение на установку ветряков?
  • Ветрогенератор на крыше 9-ти этажного здания это возможно!?
  • солнечная панель и ветрогенератор как совместить?

Эта статья прочитана 27017 раз(а)!

Продолжить чтение

  • 10000 В 2001 году Интерсоларцентр совместно с партнерами по ОПЭТ (ETSU и WREAN, Англия) подготовил руководство по применению малых и средних ветроэнергетических установок. Эксперты компании «Ваш Солнечный Дом» принимали участие в подготовке этого Руководства на русском языке. За основу было принято…
  • 10000 100 вопросов и ответов по ветроэнергетике Выдержки из брошюры «Ветроэнергетика. Вымыслы и факты. Ответы на 100 вопросов». Полную версию брошюры можно скачать по следующей ссылке: Авторы: П. П. БЕЗРУКИХ д. т. н., П. П. БЕЗРУКИХ (МЛАДШИЙ) ЧТО ТАКОЕ ВЕТЕР? Ветер…
  • 10000 100 вопросов и ответов по ветроэнергетике — 2 Выдержки из брошюры «Ветроэнергетика. Вымыслы и факты. Ответы на 100 вопросов» Авторы: П. П. БЕЗРУКИХ д. т. н., П. П. БЕЗРУКИХ (МЛАДШИЙ) Начало… ЧТО ТАКОЕ ВЕТРОСТАНЦИЯ? В энергетике станции любого типа стремятся…
  • 10000 Вопросы и ответы по использованию ветрогенераторов
  • 10000 Автономные ветроэлектрические установки Предупреждаем пользователей об обязательном соблюдении законодательства по авторскому праву, в соответствии с которым полученные копии документов разрешается использовать только для научных и образовательных целей. Запрещается тиражировать полученные копии документов, передавать на любой основе копии документов другим лицам…
  • 69 Ветроэлектрические станции Одним из перспективных направлений развития возобновляемой энергетики является ветроэнергетика. Использование энергии ветра не только помогает решить многие проблемы энергоснабжения удаленных объектов и загородных домов, но и получить независимость от местных энергоснабжающих организаций. Поставив на своём участке хотя бы…

Энергию ветра люди научились использовать давно, тысячи лет уже известны ветряные мельницы и парусные системы. Она бесконечна и экологична, поэтому не удивительно что ее научились использовать в качестве альтернативных источников энергообеспечения.

Но, прогресс не стоит на месте, среди технических новинок этой области можно назвать ветрогенератор, высокотехнологичную установку, преобразовывающую потоки ветра в электрическую энергию.

Ветрогенератор для дома уже не редкость

Ветровые электростанции давно используют в промышленных масштабах. Но, сложность конструкции, а также сложность ее монтажа, не давали возможность использовать это оборудование в частных домах, как например солнечные панели.

Однако сейчас, с развитием технологий и увеличением спроса на “зеленую энергию”, ситуация изменилась. Производители наладили выпуск малогабаритных установок для частного сектора.

Принцип работы

Ветер вращает лопасти ротора, насаженного на вал генератора. В результате вращение в обмотках вырабатывается переменный ток. Для увеличение количества оборотов, а соответственно и количества выработанной энергии может использоваться редукторная передача (трансмиссия). Она же может блокировать вращение лопастей полностью, если возникнет такая необходимость.

Анемометр следит за направлением ветра и поворачивает установку положение при котором будет максимально эффективно работать ветряной поток.

Полученный переменный ток преобразуется в постоянный 220 Вт с помощью инвертора. Далее он поступает потребителю или, через контроллер заряда, на аккумуляторные батареи для накопления.

Полная схема работы установки от генерации энергии до ее потребления.

Виды ветрогенераторов и какой лучше для частного дома

На данный момент существуют два типа данной конструкции:

  1. С горизонтальным ротором.
  2. С вертикальным ротором.

Первый тип, с горизонтальным ротором. Такой механизм считается самым эффективным. КПД составляет примерно 50%. К минусом относиться необходимость минимальной скорости ветра от 3 м.в секунду, конструкция создает много шума.

Для максимально эффективной работы необходима высокая мачта, что, в свою очередь, усложняет монтаж и дальнейшее обслуживание.

Второй тип, с вертикальным. Ветрогенератор с вертикальным ротором имеет КПД не более 20%, при этом достаточно скорости ветра всего 1-2 м в секунду. При этом он работает значительно тише, уровень выделяемого шума не более до 30 дБ, и без вибрации. Не требует большого пространства для работы, при этом не теряя эффективность.

Для установки не требуется высокая мачта. Оборудование можно смонтировать на крыше дома даже своими руками.

Отсутствие анемометра и поворотного механизма, он совсем не нужен при такой конструкции, делает этот тип ветрогенератора более дешевым по сравнению с первым вариантом.

Видео обзор

Какую установку выбрать?

Прежде чем ответить на этот вопрос нужно понять ваши требование, финансовые возможности и приоритеты в эксплуатации.

Если вы хотите получать максимум электроэнергии и готовы тратиться на периодическое обслуживание генератора, выберите первый вариант. Вложив единоразово в высокую мачту, и оплатив 1 раз в 5-10 лет замену подшипников или масла, вы получите полную энергонезависимость, и даже, если вы живете в Украине или странах ЕС, сможете продавать излишки электричества.

Высокий уровень шума этой станции требует выбрать максимально удаленное от жилых зданий место. Это момент также нужно учитывать, потому что инфразвук не останется незамеченным вашими соседями.

Если хотите выполнить монтаж самостоятельно, например на невысокой мачте или даже крыше дома, стоят выбрать ветряк с вертикальным ротором. Таких механизмов можно установить несколько на ограниченной площади без потери эффективности их работы.

Чтобы получить эквивалентную выработку в отношении с первым вариантом, необходимо будет поставить 3 ветрогенератора этого типа. Однако, в ценовом эквиваленте получается примерно одинаковая сумма (при условии самостоятельного монтажа).

Сравним два вида ВЭУ

Видео обзор эксперта в области альтернативных источников энергии

Выбор размера ветряка

Подбирать размер этой установки нужно исходя из желаемого количества электроэнергии и скорости ветра, а также его плотности, в вашем регионе. Сразу нужно уточнить что расчет мощности будет производится для ветрогенератора заводского изготовления, не сделанного своими руками из подручных деталей.

Количество необходимой электроэнергии вы можете постучать по счетам за последний год или взять произвольное (желаемое) количество.

Скорость и плотность ветра можно найти в сети, например на сайте метеослужбы. Указывать какие то цифры в этой статье я не будут, так как регионов много и климат очень быстро меняется в последние годы.

Существует несколько формул

1. Самая простая и понятная среднестатистическому человеку, однако полученные данные могут иметь определенную погрешность. По ней можно рассчитать кинетический ветрогенератор с горизонтальным валом:

AEO = 1.64 * D*D * V*V*V

Где:

  • AEO — электроэнергия, которую вы хотите получить за год.
  • D — диаметр ротора, который обозначается в метрах.
  • V — среднегодовая скорость ветра, обозначается в м/сек.

2. Более сложная формула, которую используют для своих расчетов компании, занимающиеся продажей и установкой такого оборудования на профессиональном уровне.

P = V3 * ρ * S

Где:

  • V – скорость ветра в метрах в секунду.
  • ρ – плотность воздуха, единица измерения – кг/м3
  • S – площадь лопастей, на которую дует воздушный поток, единица измерения – м2 (нужно смотреть по тех. описанию производителя).
  • P – Количество кВт, которое можно получить.

Пример расчета P = 53 * 1,25 * 33 = 5156 Вт

Таким образом мы получили 5 квт и теперь умножим эту цифру на КПД (40%), получим реальную выработку генератора.

Эффективность выработки электроэнергии напрямую зависит от диаметра лопастей ротора, посмотреть примерную производительность можно по таблице ниже.

В этой таблице указаны примерные данные, которые можно получить в зависимости от диаметра ротора, высоты установки ветрогенератора и скорости ветра.

Максимальная вырабатываемая мощность, кВт Диаметр ротора, м Высота мачты, м Скорость ветра м/с
0,55 2,5 6 8
2,6 3,2 9 9
6,5 6,4 12 10
11,2 8 12 10
22 10 18 12

3. В случаи с вертикальным ротором (осью) расчеты необходимо производить по другой формуле.

P=0.6*S*V^3

Где:

  • P– мощность Ватт
  • S– рабочая площадь лопастей кв.м.
  • V^3– Скорость ветра в кубе м/с

Более сложная, но более точная формула

P*= krV 3S/2, .

Где:

  • r — плотность воздуха,
  • V — скорость потока в м/с.
  • S — площадь потока в квадратных метрах
  • k — коэффициент эффективности турбины ветрогенератора в значении 0,2-0,5

При выборе ветряки необходимо смотреть на рекомендуемую производителем скорость ветра. Как правило, установки для частного использования, имеют такой диапазон: 2-11 М в секунду.

За и против установки ветрогенератора

Данное оборудование, как и солнечные батареи, относится к разряду альтернативных источников энергии. Но, в отличии от фотоэлементов, которым нужен солнечный свет, ветрогенератор может эффективно работать 24 часа в сутки, 365 дней в году.

Преимущества Недостатки

Бесплатная энергия в любом месте

Цена оборудования

Экологическая энергия

Стоимость монтажа

Энергонезависимость от государства и его тарифов

Стоимость обслуживания.

Независимость от солнечного света

Зависимость от скорости ветра

Чтобы уравновесить все эти плюсы и минусы часто делают связку: ветрогенератор с солнечной панелью. Эти установки дополняют друг друга, тем самым снижая зависимость выработки электричества от солнца и ветра.

Основная схема подключения элементов ВЭУ

Немного о стоимости

Цена оборудования напрямую зависит от его типа, мощности и страны производства. Несколько примеров самых популярных моделей с мощьностью:

Как видите разброс цен очень большой. В среднем установка на 1 кВт обойдется от 25 000 до 300 000 рублей. Более дорогие модели имеют ряд значительных преимуществ, от более высокого КПД до различных дополнительных функций.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх