Тепловой реле

Содержание

Актуальные буквенные и графические обозначения на электрических схемах

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Введение

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».

Исходя из этого норматива, все схемы разделены на 8 типов:

  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.

Среди существующих 10 видов, указанных в данном документе, выделяют:

  1. Комбинированные.
  2. Деления.
  3. Энергетические.
  4. Оптические.
  5. Вакуумные.
  6. Кинематические.
  7. Газовые.
  8. Пневматические.
  9. Гидравлические.
  10. Электрические.

Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах

Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами:

  • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

УГО Наименование
Замыкающий
Размыкающий
Переключающий
Переключающий с наличием нейтрального положения

9 функциональных признаков УГО

УГО Наименование
Дугогашение
Без самовозврата
С самовозвратом
Концевой или путевой выключатель
С автоматическим срабатыванием
Выключатель-разъединитель
Разъединитель
Выключатель
Контактор

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГО Наименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):

  • Штырь
  • Гнездо
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

УГО Наименование
PF Частотомер
PW Ваттметр
PV Вольтметр
PA Амперметр

ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

Наименование Обозначение
Выключатель автоматический в силовой цепи QF
Выключатель автоматический в управляющей цепи SF
Выключатель автоматический с дифференциальной защитой или дифавтомат QFD
Рубильник или выключатель нагрузки QS
УЗО (устройство защитного отключения) QSD
Контактор KM
Реле тепловое F, KK
Временное реле KT
Реле напряжения KV
Импульсное реле KI
Фотореле KL
ОПН, разрядник FV
Предохранитель плавкий FU
Трансформатор напряжения TV
Трансформатор тока TA
Частотный преобразователь UZ
Амперметр PA
Ваттметр PW
Частотомер PF
Вольтметр PV
Счетчик энергии активной PI
Счетчик энергии реактивной PK
Элемент нагревания EK
Фотоэлемент BL
Осветительная лампа EL
Лампочка или прибор индикации световой HL
Разъем штепсельный или розетка XS
Переключатель или выключатель в управляющих цепях SA
Кнопочный выключатель в управляющих цепях SB
Клеммы XT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

РТТ-1Р реле электротепловое токовое

Здравствуйте! Вы попали на доску объявлений. Сотрудники Promelectrica.com разместили тут товары, которые Вам могут быть интересны. Информация о наличии по телефонам (495) 640-04-53 и (499) 347-37-163

Подробное описание

Реле электротепловые токовые РТТ-1Р

Также это изделие может называться: РТТ 1Р, РТТ1Р, rtt-1r, rtt1r, rtt 1r, ptt-1p, ptt1p, ptt 1p.

РТТ-1Р реле электротепловое токовое с одним размыкающим контактом предназначено для отключения цепи электрической установки при увеличении в ней тока сверхдопустимого.

Технические характеристики РТТ-1Р:

Количество контактов — 1.

Номинальный рабочий ток — 1,9 А; 2,5 А; 3,8 А; 6 А; 7 А; 9,1 А.

Токи срабатывания — 2,7 А; 3,7 А; 5,3 А; 8,7 А; 10,1 А; 13,5 А.

Рабочее напряжение питания — 220 В.

Габаритные размеры — 22×36,3×20 мм.

Варианты исполнения РТТ-1Р в зависимости от вида приёмки:

— отдел технического контроля — РТТ-1Р ОТК;

— особо стойкие — ОСРТТ-1Р, РТТ-1Р ОС;

— приемка заказчика — РТТ-1Р ПЗ;

— военная приемка — РТТ-1Р ВП.

Тепловое реле для электродвигателя: принцип работы, устройство, как выбрать

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Состоит прибор из корпуса, нихромового нагревателя, биметаллической пластины, защелки, винта, рычага, подвижного контакта и кнопки возврата (+)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Тепловое реле ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Принцип работы приспособления

Выполняя защитную функцию, автоматический выключатель разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится магнитный пускатель. Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.

Так как составные части биметаллической пластины выполнены из пары разнородных металлов, имеющих неодинаковые коэффициенты расширения, нагрев заставляет ее изгибаться и взаимодействовать с контактами

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании тепловых реле.

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.

По такой схеме функционирует тепловое реле. Незакрепленный конец биметаллической пластины при ее прогибе воздействует на контакты термореле (+)

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Как подключить тепловое реле

Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.

В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.

При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.

Тепловое реле размещают за контакторами, но перед электродвигателем. Подсоединение контакта normal connectde к кнопке «Стоп» на пульте управления осуществляют по последовательной схеме (+)

Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.

Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.

При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.

Если исходить из типа подключения, можно выделить две большие группы термореле:

  • первая группа – устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек;
  • вторая группа – приборы, устанавливаемые на контактор пускателя непосредственно.

В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.

Схема теплового реле. На нее нанесены обозначения управляющих элементов и выводов. У разных моделей эти обозначения могут отличаться (+)

К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.

Ток в тепловом реле движется последовательно через его нагревательный модуль и дальше к двигателю . С обмоткой пускателя прибор соединяют дополнительные контакты (+)

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Существующие типы устройств

Класс тепловых реле включает несколько видов: ТРН,РТЛ, ТРП, РТИ, РТТ. Применение каждого обусловлено особенностями конструкции.

Токовое реле двухфазное (ТРН), используют в основном для электрозащиты двигателей асинхронных, имеющих короткозамкнутый ротор. Как правило, они работают от сети с номиналом до 500 В, частотой 50 Гц.

Оснащено реле ручным механизмом управления контактами. Габариты ТРН дают возможность встраивать их в комплектные устройства как закрытого, так и открытого типа станций, координирующих работу приводов. Функцию защиты от КЗ они не выполняют и сами нуждаются в ней.

Реле ТРП имеют механизм, устойчивый к вибрациям, ударопрочный корпус. Разработаны для охраны асинхронных трехфазных двигателей, функционирующих в условиях больших механических нагрузок.

Рассчитаны они на максимальный ток 600 А и напряжение максимум 500 В, а в цепях с постоянным током — 440 В. Автоматика нечувствительна к внешней температуре и срабатывает тогда, когда показатель превышает 200°C.

Устройства РТЛ — трехфазные, кроме защиты двигателя от перегрузок, предохраняют от заклинивания ротор. Они страхуют его от поломок в случае перекоса фаз, при затяжном пуске.

Работают автономно с клеммниками КРЛ и в модификации с магнитным пускателем ПМЛ. Токовый рабочий промежуток — от 0,10 до 86 А.

Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение

РТТ – приспособление защищает асинхронные двигатели от токовых бросков, перекоса фаз, заклинивания и других нештатных ситуаций. Используется и как самостоятельный прибор, и в виде встройки в пускатели ПМА, ПМЕ.

Изделие трехфазное РТИ наделено теми же функциями, что и предыдущее, но используется в модификации с пускателями КТМ и КМИ.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение (+)

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Время-токовые характеристики ТР и защищаемого двигателя. При токах КЗ нагревательные элементы реле становятся термически неустойчивыми (+)

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния.

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

В таблице приведены технические характеристики термореле типа РТЛ. По ней можно подобрать защитное устройство с необходимыми параметрами по мощности двигателя (+)

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

При срабатывании защиты сначала устраняют первопричину остановки, а затем возвращают «теплушку» в исходное состояние при помощи клавиши возврата

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов.

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных вариантах подключения теплового реле одинаков. Для лучшей ориентации в схемах надо уметь “читать” маркировку устройств. В идеале все работы по подключению должен выполнять мастер, имеющий допуск к работе в условиях высокого напряжения.

Тепловое реле: назначение устройств, технические характеристики

Использование тепловых реле позволяет защитить электрические двигатели от токовой перегрузки: при превышении определенных параметров они отключают подачу электроэнергии.

При перегрузке в цепи происходит значительное повышение температуры. В некоторых случаях это может стать причиной неисправности или поломки оборудования. Применение тепловых реле дает возможность значительно продлить период эксплуатации аппаратуры, так как обеспечиваются нормальные условия для его функционирования.

Стоимость устройств варьируется в широком диапазоне. Во многом она зависит от особенностей эксплуатации, назначения и вида теплового реле. Например, РТЛ. Обеспечивают защиту электрических моторов от возможных перегрузок, исключают вероятность заклинивания ротора, перекоса фаз и затяжного пуска.

Цены на тепловые реле также зависят от того, какими технико-эксплуатационными характеристиками они обладают.

Основные параметры тепловых реле:

  1. Номинальный ток. При определенном значении ТР не срабатывает в течение длительного промежутка времени. В то же время превышение лимита не приводит к незамедлительному отключению цепи. Например, если значение больше номинального на 20 %, то ТР сработает примерно через 20-30 минут.
  2. Номинальное напряжение. Обычно бытовые модели предназначены для эксплуатации в однофазных сетях переменного тока (220 вольт и 50 Гц). При этом выпускаются и промышленные тепловые реле, которые могут быть рассчитаны на использование в трехфазных сетях.
  3. Эксплуатационные условия. Категория размещения тепловых реле определяется в соответствии с нормами ГОСТ 15150. Стандарт описывает возможные температурные значения и уровень влажности, а также устойчивость прибора к вибрациям, ударам, взрывоопасным газам.
  4. Граница срабатывания теплового реле.
  5. Количество и вид дополнительных контактов управления.
  6. Чувствительность к перекосу фаз.

ВИДЫ ТЕПЛОВЫХ РЕЛЕ, ИХ ПРИНЦИП ДЕЙСТВИЯ И СФЕРА ПРИМЕНЕНИЯ

Область применения такого оборудования — цеха промышленных предприятий, ремонтные мастерские, некоторые объекты сельского и коммунального хозяйства. Внедрение этих устройств позволяет защищать электроприводы от перегрузок.

Принцип действия реле основан на способности электрического тока повышать температуру проводника при прохождении через него.

Любой материал при нагреве увеличивает свой объем, но по-разному. Если нагреть две жестко соединенные пластины из разных металлов, то они деформируются. Движение передается на механическую защелку выключателя, который срабатывает и разъединяет электрические контакты.

Как правило, в тепловом реле используют 2 биметаллические пластины. Чаще всего это инвар, а также немагнитная или хромоникелевая сталь, имеющие разные коэффициенты расширения. Там, где пластины прилегают друг к другу, они жестко закрепляются путем штамповки, горячей прокатки или сварки. Когда происходит нагревание неподвижной части закрепленной пластины, она изгибается, что и приводит к срабатыванию — взаимодействию с контактным блоком реле.

Однако нагревание может происходить двумя способами. Например, тепло выделяется при прохождении через биметаллическую часть нагрузочного тока. Кроме того, нагрев возможен благодаря специальному нагревателю, также обтекаемому током нагрузки. Наиболее эффективно тепловое реле работает при комбинировании двух способов нагревания.

Разновидности применяемых в промышленности тепловых реле:

  • РТЛ;
  • РТТ;
  • ТРН;
  • РТП и др.

Серия РТЛ — устройства для защиты электродвигателей от длительных перегрузок или выпадения одной из фаз. Они применяются как в комплекте с пускателями типа ПМЛ, так и отдельно.

РТТ — тепловые реле для защиты промышленных асинхронных электромоторов (380 V) с короткозамкнутым ротором от затяжных перегрузок. Они также реагируют на выпадение фазы, иногда встраиваются в пускатели типа ПМА.

Серия ТРН — это двухфазные тепловые реле промышленного назначения. Они применяются в комплекте с магнитными пускателями и выполняют функцию защиты асинхронных электродвигателей от перегрузки.

РТП — тепловые реле с комбинированной системой нагрева биметаллической пластины. Конструкция устройства обеспечивает плавную ручную настройку тока срабатывания. Возврат якоря реле в исходное положение осуществляется двумя способами:

  • вручную, посредством кнопки;
  • автоматически, после остывания биметаллической пластины.

Особенности установки теплового реле

Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.

Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.

Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов. Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя.

КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ

Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:

  • диапазон токов установки;
  • климатическое исполнение;
  • режим возврата теплового реле (ручной или автоматический).

При выборе теплового реле рекомендуем учитывать и такие аспекты:

  • некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
  • устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
  • выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.

Тепловое реле: устройство и принцип действия

Для обеспечения безопасной эксплуатации электротехнического оборудования используются разнообразные электронные приборы и другие приспособления. Они предназначены для контроля нормативных параметров работы электрических установок, а в случае аварийных ситуаций для их отключения. Ярким представителем таких устройств является электротепловое реле, отключающее электроустановку от питающей электрической сети в случае длительного превышения номинального значения рабочего тока. Термореле — это автомат отключения прибора, потребляющего электроэнергию, при серьезных перегрузках оборудования по току электропитания.

Области использования прибора

Электротепловые реле предназначены для предотвращения выхода из строя электромоторов от перегрузок по показателям рабочего тока, в результате которых происходит превышение нормативных показателей рабочей температуры последних. Любой электрический двигатель имеет номинальный рабочий ток. Критическое превышение этой технической характеристики в течение длительного времени приведет к перегреву обмоток силовой установки, разрушению изоляционного слоя и выходу из строя мотора в целом.

Устройство электротепловой защиты отключит электрический двигатель и не допустит аварии и выхода из строя электромотора. Термореле защиты от перегрузок применяются и в других сферах народного хозяйства, быту и производстве, но основное их предназначение — это защита электрических силовых установок от увеличения тока нагрузки до критических значений. Без этого прибора безопасно эксплуатировать электрические двигатели невозможно!

Конструкция и принцип работы прибора

Надежность работы энергетических установок напрямую зависит от различных перегрузок, которым данное устройство подвергается в период эксплуатации. Для каждого устройства существуют предельные величины тока и их длительность, при которых оборудование функционирует в нормальном и безопасном режиме. При номинальных значениях тока длительность работы электродвигателя или любой другой электроустановки ограничена только механической прочностью вращающихся деталей. При длительном превышении этого значения возникает аварийная ситуация.

Для обеспечения защиты электрических двигателей и другого оборудования от перегрузок широко используются устройства с биметаллическими элементами. Эти приборы работают в соответствии с законом физики, описанным учеными Джоулем и Ленце в 19 веке и определяющим зависимость выделенного тепла от силы тока на конкретном участке электрической цепи. Именно это закон является определяющим в работе электротеплового реле (расцепителя). В составе конструкции прибора имеется спираль, которая является излучателем тепла. Непосредственно рядом с ней монтируется биметаллическая пластина, реагирующая на излучаемое тепло.

Термопластины изготовлены из двух металлических сплавов с различной теплопроводностью, которые при нагреве/охлаждении меняют свою геометрию. Это свойство биметаллических элементов заложено в принцип функционирования теплового расцепителя. При любом увеличении или уменьшении тока нагрузки, рабочие пластины меняют свое пространственное расположение и механически воздействуют на толкатель, который размыкает или замыкает контактные группы термореле, подключенные к обмоткам магнитного пускателя (МП). Пускатель двигателя срабатывает и отключает нагрузку от электрической сети. Стандартная конструкция электротеплового реле представлена на следующей картинке.

На работу тепловых расцепителей с биметаллическими пластинами оказывает воздействие температура окружающего воздуха, дополнительно нагревая рабочие элементы конструкции прибора. Для исключения этого явления все устройства этого типа снабжены дополнительными компенсирующими биметаллическими пластинами, изгибающимися в противоположную сторону относительно основных элементов.

Компенсатор является регулятором тока срабатывания устройства. Для регулировки используется эксцентрик со шкалой, разделенной на две части. При повороте влево ручки компенсатора значение тока срабатывания уменьшается, а при смещении вправо соответственно увеличивается. Регулировка значений тока срабатывания расцепителя происходит путем увеличения/уменьшения зазора между толкателем и основной пластиной, за счет воздействия эксцентрика на дополнительную биметаллическую пластину.

Важно! При обрыве или отключении одной из фаз питания, в трехфазной сети, ток нагрузки в оставшихся двух фазах увеличивается, что приводит к срабатыванию электротеплового реле. Исходя из этого, можно сказать, что тепловой расцепитель является защитой электродвигателя от работы в аварийной ситуации с оборванной фазой.

Виды термореле защиты

Следует отметить, что на современном рынке электротехнических изделий представлены разные типы модулей тепловой защиты электрических силовых агрегатов. Каждый из этих типов устройств используется в конкретной ситуации и для определенного вида электрического оборудования. К основным разновидностям тепловых реле защиты можно отнести следующие конструкции.

  1. РТЛ — электромеханический прибор, обеспечивающий качественную тепловую защиту трехфазных электродвигателей и других силовых установок от критических перегрузок по току потребления. Кроме этого, термореле этого вида защищает электроустановку при дисбалансе питающих фаз, затянутого во времени пуска устройства, а также при механических проблемах с ротором: заклинивания вала и так далее. Монтируется прибор на контактах ПМЛ (пускатель магнитный) или как самостоятельный элемент с клемником КРЛ.
  2. РТТ — трехфазное устройство, предназначенное для обеспечения защиты электрических двигателей с короткозамкнутым ротором от токовых перегрузок, перекосу между питающими фазами и при механических повреждениях ротора, а также от затянутого по времени пускового момента. Имеет два варианта установки: как самостоятельный прибор на панели или совмещенный с магнитными пускателями ПМЕ и ПМА.
  3. РТИ — трехфазный вариант электротеплового расцепителя, защищающего электрический двигатель от тепловых повреждений обмоток при критическом превышении значений тока потребления, от длинного пускового момента, асимметрии питающих фаз и при механических повреждениях движущихся частей ротора. Устанавливается устройство на магнитных контакторах КМТ или КМИ.
  4. ТРН — двухфазное устройство электротепловой защиты электрических двигателей, обеспечивающее контроль длительности пуска и тока в нормальном рабочем режиме. Возврат контактов в исходное состояние после аварийного срабатывания осуществляется только вручную. Работа данного расцепителя совершенно не зависит от температуры окружающего воздуха, что актуально для жаркого климата и горячих производств.
  5. РТК — электротепловой расцепитель, при помощи которого можно контролировать один-единственный параметр — температуру металлического корпуса электрической установки. Контроль осуществляется с использованием специального щупа. При превышении критического значения температуры устройство отключает электроустановку от линии питания.
  6. Твердотельное — тепловое реле, не имеющее в своей конструкции каких-либо подвижных элементов. Работа расцепителя не зависит от температурного режима в окружающей среде и других характеристик атмосферного воздуха, что актуально для взрывоопасных производств. Обеспечивает контроль над длительностью разгона электрических моторов, оптимальным током нагрузки, обрывом фазных проводов и заклиниванием ротора.
  7. РТЭ — защитное термореле, по своей сути являющееся плавким предохранителем. Прибор изготовлен из металлического сплава с низкой температурой плавления, который плавится при критических значениях температуры и разрывает цепь, питающую электроустановку. Это электротехническое изделие монтируется непосредственно в корпус электросиловой установки на штатное место.

Из вышеприведенной информации видно, что в настоящее время существует несколько различных типов электротепловых реле. Все они используются для решения одной-единственной задачи — защиты электрических двигателей и других силовых электроустановок от токовых перегрузок с повышением температур рабочих частей агрегатов до критических значений.

Схема подключения теплового реле

Чаще всего, подключение теплового реле осуществляется непосредственно к магнитному пускателю. Силовые контакты устройства позволяют выполнить его монтаж на МП без проводов. Также существуют модели тепловой защиты, которые можно установить как самостоятельный модуль на монтажную панель или DIN-рейку в электрический шкаф. На следующем рисунке представлена структурная схема подключения теплового реле в соответствии с действующим ГОСТом.

На следующем рисунке приведена схема управления электродвигателем, отключающим его от сети в случае возникновения аварийной ситуации: перегрузке по току или обрыву провода одной из фаз.

Для непосвященного человека все эти принципиальные схемы не значат ровно ничего, поэтому на следующей картинке будет представлена более доступная для понимания простым потребителем схема подключения электротеплового реле с фотографиями всех элементов, входящих в систему защиты электрических моторов от токовых перегрузок.

Коротко рассмотрим, как действует данная компоновка защиты электродвигателей. Входной автомат обеспечивает подачу одной фазы через нормально-замкнутую аварийную кнопку «Стоп» на разомкнутую кнопку «Пуск». При ее включении, напряжение питания попадается на обмотку магнитного пускателя, который последовательно включает электромотор. Все фазы питающей электросети, поступающие на электрический двигатель, проходят через обмотки реле с биметаллическими элементами. В случае увеличения тока нагрузки до максимальных значений срабатывает тепловая защита и силовая установка обесточивается.

Внимание! Электротепловое реле устанавливается в цепь питания после всех типов контакторов, но перед электродвигателем или другим электрическим оборудованием. Включение размыкающего цепь устройства выполняется кнопкой «Стоп». Все элементы системы защиты соединены последовательно.

Выбор электротеплового реле

Выбор термореле зависит от многих факторы его эксплуатации: температуры окружающей среды; где оно установлено; мощности подключенного оборудования; необходимых средств аварийного оповещения и так далее. Чаще всего, потребитель делает выбор, основываясь на следующих технических характеристиках прибора.

  1. Для однофазных сетей следует выбирать термореле с функцией автосброса и возврата контактов в исходное состояние через определенный промежуток времени. Такое устройство повторно сработает, если аварийная ситуация сохранилась и перегрузка оборудования по току продолжает присутствовать.
  2. Для жаркого климата и горячих цехов следует использовать тепловые реле с компенсатором температуры воздушной среды. К ним относятся модели с обозначением ТРВ. Они способны нормально функционировать в широком интервале внешних температур.
  3. Для оборудования, критичного к обрыву фаз, следует использовать соответствующую тепловую защиту. Практически все модели термореле способны отключать электроустановки в случае возникновения такой ситуации, так как обрыв одной фазы резко увеличивает ток нагрузки на двух оставшихся.
  4. Тепловые реле со световой индикацией чаще всего используются в промышленности, где необходимо оперативно реагировать на аварийную ситуацию. Светодиодные датчики состояния устройства позволяют оператору визуально контролировать рабочий процесс.

Цена реле тепловой защиты может колебаться в очень широком диапазоне. Стоимость устройства зависит от многих факторов: общих технических характеристик, наличия дополнительных функций, используемых при производстве материалов, а также от популярности производителя прибора. Минимальная цена термореле около 500 рублей, а максимальная может доходить до нескольких тысяч. Реле от известных производителей, в обязательном порядке, комплектуются паспортом с подробным описанием технических характеристик, а также полной инструкцией по подключению прибора к электроустановкам.

Преимущества устройства

По своей сути, тепловое реле является автоматическим устройством отключения электрооборудования от сети питания. Но в отличие от простого автомата включения/отключения электротепловое реле имеет ряд следующих существенных преимуществ:

  • возможность регулировки времени и момента срабатывания в зависимости от тока перегрузки и длительности его воздействия на электрооборудование;
  • разные варианты коммутации: дистанционный монтаж в электрических щитах или непосредственная установка на магнитных пускателях.

К другим достоинствам тепловых реле можно отнести малые габариты, массу и, конечно же, стоимость, а также простоту конструкции и высокую эксплуатационную надежность. Определенным недостатком устройства является необходимость в периодических настройках и поверках.

Электротепловое реле (расцепитель) — это один из самых важных элементов системы защиты электрических двигателей и другого электрооборудования. Данное устройство способно защитить электроустановку от любых перегрузок. Тепловой расцепитель не подвержен ложным отключениям нагрузки при кратковременных скачках тока, что выгодно отличает его от входного автомата. Термореле защиты можно монтировать не только совместно с МП, но и как самостоятельное защитное устройство.

P.S. Подключайте тепловое реле к электросиловым установкам в полном соответствии c инструкцией по эксплуатации. Если у вас нет достаточного опыта в выполнение таких работ, то лучше обратиться к специалистам. Самостоятельно ремонтировать прибор можно только при наличии элементарных знаний в области электротехники. В противном случае ремонт термореле следует производить в специализированном сервисном центре!

Видео по теме

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх