Заземление монтаж

ТТК. Монтаж (устройство) системы заземления внутреннего контура

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА

МОНТАЖ (УСТРОЙСТВО) СИСТЕМЫ ЗАЗЕМЛЕНИЯ ВНУТРЕННЕГО КОНТУРА

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Типовая технологическая карта (ТТК) составлена на монтаж (устройство) системы заземления внутреннего контура.
ТТК предназначена для ознакомления рабочих и инженерно-технических работников с правилами производства работ, а также с целью использования при разработке проектов производства работ, проектов организации строительства, другой организационно-технологической документации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

Монтаж внутреннего контура — это монтаж заземляющих проводников — проводников, соединяющих заземляемую часть (точку) с заземлителем. Они могут прокладываться в земле, в помещениях, в наружных установках. Сечение заземляющего проводника, присоединяющего заземлитель рабочего (функционального) заземления в электроустановках до 1000 В к главной заземляющей шине, должно быть не менее: медного — 10 мм; алюминиевого — 16 мм; стального — 75 мм.
Соединение и присоединение заземляющих проводников, прокладываемых в грунте, выполняются так же как соединения и присоединения электродов заземлителя. В помещениях соединение и присоединение заземляющих проводников допускается выполнять болтами, пайкой или прессованием. Присоединение заземляющих проводников к трубопроводу, используемому в качестве естественного заземлителя, должно выполняться до ввода трубы в здание (до водомера, задвижек, фланцев), в противном случае над водомером, задвижкой, фланцем должны монтироваться перемычки из полосовой стали сечением не менее 100 мм.
Все соединения элементов заземляющего устройства должны быть надежными и иметь малое переходное сопротивление, не более 0,05 Ом.
Конструкции заземлителей могут быть самыми разнообразными: с одним электродом (одиночный), с несколькими электродами, расположенными в ряд (групповой), как показано на рисунке 1, с несколькими электродами, располагаемыми в виде замкнутого контура (рис.2), с несколькими электродами, размещаемыми под фундаментом здания (углубленный). Заземлители электроустановок до 1 кВ зданий выполняют, как правило, групповыми. Заземлители для закрытых ТП и РУ напряжением 6-10 кВ выполняют в виде контура. Заземлители для открытых ТП и ОРУ напряжением 35 кВ и выше также выполняют в виде контура, но кроме того, в целях выравнивания электрического потенциала на территории и обеспечения присоединения электрооборудования к заземлителю, на территории ОРУ прокладывают продольные и поперечные горизонтальные электроды и объединяют их между собой в заземляющую сетку.

Рис.1. Заземляющее устройство

Рис.2. Заземлитель в виде замкнутого контура

Для жилых и общественных зданий применяют заземлители простейших конструкций.
В электроустановках зданий, содержащих специальное оборудование, требуется выполнить рабочее функциональное заземление, предназначенное для обеспечения нормальной работы этого оборудования. Например, для создания определенного режима работы отдельных участков электрической сети, для нормальной работы информационно-вычислительной техники, лечебного физиотерапевтического и другого электронного оборудования.
В некоторых случаях заземляющие устройства защитного и рабочего функционального заземления могут быть общими. Однако для обеспечения работы специального оборудования, например медицинского томографа, разработчики, требуют практически полного отсутствия наведенного электрического потенциала на его корпусе. Это требование может быть выполнено путем устройства отдельного функционального заземляющего устройства, не связанного с другими заземляющими устройствами и не подверженных их влиянию.
Выполнение таких требований вызывает большие трудности особенно в черте городов или крупных промышленных предприятий. В этих случаях приходится выполнять глубинные заземлители, электроды которых погружают на большую глубину (30-50 м), исключая, тем самым, влияние блуждающих токов и появление стороннего электрического потенциала.

Пример выполнения заземляющего устройства, защитных проводников и защитных проводников уравнивания потенциалов

Рис.3. Заземляющее устройство, защитные проводники и защитные проводники уравнивания потенциалов
М — открытая проводящая часть; С — сторонняя проводящая часть; С1 — металлические трубы водопровода; С2 — металлические трубы канализации; С3 — металлические трубы газоснабжения с изолирующей вставкой; С4 — вентиляция и кондиционирование; С5 — система отопления; С6 — металлические трубы, например в ванной комнате; С7 — сторонние проводящие части в зоне досягаемости рукой от открытых проводящих частей; В — главный заземляющий зажим (главная заземляющая шина); Т — заземляющий электрод; Т1 — фундаментный заземлитель; Т2 — заземлитель молниезащиты, если требуется; 1 — защитный проводник; 2 — защитный проводник уравнивания потенциалов; 3 — защитный проводник уравнивания потенциалов для дополнительного уравнивания; 4 — токоотводы системы молниезащиты; 5 — заземляющий проводник

Примечание — Заземляющий проводник — это проводник, который соединяет заземляющий электрод с точкой основной системы уравнивания потенциалов, обычно это главный заземляющий зажим (шина).

3. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ

При монтаже внутреннего контура заземляющего устройства выполняют следующие операции:
— размечают трассу внутреннего контура;
— устанавливают главную заземляющую шину или прокладывают магистрали внутреннего контура и присоединяют их к главной заземляющей шине или к наружному контуру;
— соединяют элементы внутреннего контура между собой и присоединяют заземляющие (нулевые защитные) проводники к оборудованию и конструкциям;
— проверяют целостность цепи между заземлителем и заземляемым оборудованием и конструкциями (силами электротехнической лаборатории).
При выполнении разметки трассу внутреннего контура располагают параллельно архитектурным линиям здания. Магистральные линии намечают к прокладке на высоте 400-600 мм от уровня пола. При этом обеспечивают доступность для осмотра магистральных линий и отводов от них. Одновременно помечают места крепления заземляющих проводников. Места крепления должны размещаться на следующих расстояниях:
— на прямых участках, между креплениями — 600-1000 мм;
— на поворотах, от вершин углов — 100 мм;
— от мест ответвлений — 100 мм;
— от нижней поверхности съемных перекрытий каналов — не менее 50 мм.
Крепление заземляющих проводников к кирпичным и бетонным строительным основаниям производят с помощью строительно-монтажного пистолета, сварки или винтов саморезов. В сухих помещениях заземляющие проводники прямоугольного сечения крепятся непосредственно к основанию. В сырых и особо сырых, а также в помещениях с химически активной средой крепление выполняют на подкладках или опорах, закрепляемых к основаниям так, чтобы расстояние между ними и стеной было не менее 10 мм.

Порядок работ при монтаже заземления

Обустройство эффективного заземления на стороне потребителя является важнейшей частью комплекса мероприятий, обеспечивающих надёжную защиту от случайного поражения электричеством. При решении этой задачи особое внимание уделяется такой составляющей предстоящих работ, как монтаж заземляющих устройств.

Техническое задание

В соответствии с требованиями нормативов на любом энергозависимом объекте перед монтажом заземляющего контура подготавливается техническое задание (ТЗ). В нем обязательно учитываются следующие рабочие моменты:

  • тип используемого заземления (одно- или двухконтурное, стационарное или переносное);
  • схема и способ прокладки заземляющих шин;
  • геометрические размеры и форма погружаемой в грунт части конструкции;
  • материал, используемый для изготовления заземляющих проводников и заземлителя (сталь, медь или алюминий);
  • способ их соединения (сварка или ботовое сочленение).

Это позволяет в дальнейшем быстро и своевременно выполнить работы по монтажу заземления, а также подготовить документацию.

Одноконтурная и двухконтурная схема

Независимо от способа организации электроснабжения на промышленном или гражданском объекте, установка заземлителей и монтаж защитного заземления осуществляется либо по одноконтурной, либо по 2-х контурной схеме.

В первом случае заземляющий контур прокладывается только внутри строения, что позволяет подключать к нему соединительные шины, проложенные от металлических частей действующих установок и другого электротехнического оборудования.

В простейшей ситуации (в бытовых условиях, например) защитный контур заземления может вообще не делаться. В этом случае его функцию выполняет расположенная во вводном устройстве или электрическом шкафу главная заземляющая шина (ГЗШ).

При использовании двухконтурной системы заземления к внутренней шинной обвязке добавляется ещё один контур, монтаж которого происходит снаружи объекта.

Как правило, он выполняется в виде распределённого по периметру набора одиночных заземлителей (вбитых в землю металлических прутьев или отрезков арматуры, соединённых между собой стальной шиной).

Образующаяся при этом замкнутая система позволяет увеличить площадь соприкосновения с грунтом и обеспечивает лучшие условия для стекания тока в почву.

Наружными контурами, дополняющими внутреннюю распределительную шину, обычно оснащаются трансформаторные подстанции, где требования к качеству заземления особенно высоки.

В соответствии с требованиями нормативов электромонтажные работы на подстанциях проводятся с тем расчётом, чтобы элементы наружной обвязки отстояли от края строения более чем на один метр.

Металлические штыри или отрезки арматуры вбиваются в землю на глубину не менее 0,7 метра. При этом соединяющая их стальная полоса должна располагаться строго вертикально (то есть ставиться на «ребро»).

Правила работы с переносными видами

Перечисленные схемные решения относятся к разряду стационарных заземлений, привязанных к конкретному месту. Однако в ряде случаев (для проведения ремонтных работ на отключённых сетях, например) может потребоваться монтаж временных или переносных приспособлений, в основу работы с которыми заложен принцип наложения заземления.

Переносные конструкции изготавливаются в виде оголённой медной жилы, имеющей на одном из своих концов забиваемый в землю металлический штырь, а с другой – специальную медную струбцину, служащую для подсоединения к заземляемой шине.

Некоторые модели переносных или временных устройств защиты вместо штыря имеют ещё одну струбцину, обеспечивающую надёжный контакт с заземляющей конструкцией (заземлителем).

Потребность в переносном заземлении этого класса объясняется необходимостью предупредить появление на обслуживаемом участке питающей цепи опасного напряжения, включённого по ошибке или случайно.

Правила монтажа этих накладных конструкций строго регламентированы действующими руководствами по обустройству заземлений. Ниже приведён перечень основных моментов, на которые следует обратить внимание в процессе работы с ними:

  1. прежде всего, следует убедиться в отсутствии на обслуживаемой шине опасного напряжения, используя для этих целей специальный указатель;
  2. для обеспечения защиты линии сначала к ней подсоединяются струбцины со стороны заземляющего устройства и лишь после этого переходят к фиксации их на защищаемой шине;
  3. струбцина заземления подключается к оголённой шине обесточенной токоведущей цепи с той её стороны, откуда более всего вероятна ошибочная подача напряжения (обычно – со стороны распределительного щита).

Снятие или разборка конструкции временного заземления осуществляется в обратной последовательности.

Пример на железнодорожном транспорте

Рассмотрим требования к монтажу заземления на железнодорожном транспорте (стационарные или тяговые электроустановки), указания по которым приводятся в инструкции ЦЭ-191. Согласно этому документу всё действующее электрооборудование должно быть надёжно защищено путём подключения заземляющего проводника к специальной шине.

Той же инструкцией оговаривается величина максимального сопротивления шины заземления, при которой токи утечки достаточны для того, чтобы защитные устройства успевали сработать и своевременно отключить аварийный участок контактной сети.

Отключение повреждённой линии производится с помощью специальных фидерных выключателей, размещённых на тяговой подстанции и настроенных на требуемый ток отсечки (смотрите ПУЭ).

Особые требования предъявляются к конструкциям или агрегатам с повышенным риском попадания на них напряжения контактной сети (из-за пробоя изоляции или при случайном соприкосновении). Всё это оборудование должно иметь надёжное электрическое соединение с основной тяговой или рельсовой сетью.

Такому заземлению подлежат и все металлические конструкции, включая опоры контактной линии с закреплёнными на изоляторах проводами.

Особенности подключения

При проектировании и монтаже любой заземляющей системы основное внимание должно уделяться обеспечению высокой надежности болтовых сочленений и сварных контактов между отдельными её составляющими.

Поскольку такие конструкции рассчитаны на длительную эксплуатацию – необходимо минимизировать возможные механические нагрузки на них, а также обеспечить надёжную защиту металлических поверхностей от коррозии.

При монтаже защитного заземления в условиях домашней разводки, прежде всего, необходимо определиться с устройством подводящих питающих линий.

Дело в том, что в домах старой застройки, построенных до 2003 года, нормативными требованиями не предусматривалось наличие в питающей цепи отдельной заземляющей жилы. В таких домах на стороне потребителя (у распределительного щитка) в подводящей проводке имеется всего лишь 2 провода – «фазный» и «нулевой».

Причём последний представляет собой совмещённую нулевую рабочую (PE) и нулевую защитную (N) жилы и согласно международному стандарту обозначается как PEN.

Для монтажа заземления в таких домах проводник PEN намеренно расщепляется на две составляющие, после чего отдельная жила N используется в качестве шины заземления.

Понятно, что созданная таким образом искусственная конструкция лишь частично соответствует требованиям нормативов, поскольку в многоквартирном доме не удаётся организовать повторное заземление.

В домах современной застройки в подводящей проводке должна иметься ещё одна (третья) жила, предназначенная специально для подключения заземляющего провода электрооборудования и бытовых приборов. При этом общий проводник PEN уже разделён на две отдельные жилы PE и N.

Порядок изготовления типового заземлителя

Наиболее распространённой формой конструкции типового заземлителя является равнобедренный треугольник, длина каждой из сторон (полос) которого составляет примерно 1,2 метра.

При этом в качестве его вертикальных составляющих используются стальные уголки с типоразмером 40х40 или 45х45 и толщиной порядка 4-5- миллиметров.

В отсутствии стальных уголков в землю устанавливают (забивают) трубные металлические заготовки, имеющие примерно те же типоразмеры, как по диаметру, так и по толщине. Длина вбиваемых труб или электродов для заземления может выбираться от 2-х до 3-х метров (в зависимости от состава почвы).

Совет специалиста. Для облегчения погружения (забивания) уголка или трубы в грунт, их нижний конец рекомендуется срезать болгаркой под конус.

С информацией по допустимым размерам отдельных элементов заземления, зависящим от формы и материала изделия, можно будет ознакомиться в таблице 1.7.4 ПУЭ.

На рисунке приведена схема расположения заземлителя и состав его элементов.

Забивать уголки (трубы) в землю необходимо таким образом, чтобы их концы выступали над поверхностью грунта примерно на 15-20 сантиметров.

После забивки штырей на требуемую глубину они по периметру соединяются на сварку стальной полосой шириной 30-40 и толщиной 5 миллиметров. При этом обвязка из стальной полосы должна располагаться примерно на полуметровой глубине.

По завершении монтажа вся конструкция заземления засыпается выработанным ранее грунтом, после чего к одному из её углов приваривается провод, протянутый со стороны ГЗШ.

Следует отметить, что технология монтажа выносного заземляющего контура предполагает удаление его от здания не более чем на 10 метров.

Контроль состояния заглублённых в землю элементов организуется в соответствии с графиком, утверждённым соответствующими техническими службами.

Моё мнение по системам заземления

Пример заземления в частном доме

Заземление – тема насколько сложная, настолько и простая. Недаром вопросы заземления вызывают множество споров на электрических сайтах и форумах.

Попробуем разобраться, что к чему в этой теме. Выскажу своё мнение, которое иногда будет непопулярным. Кому нужна официальная трактовка – читайте ПУЭ (пункт 1.7). Также в интернете много сайтов и форумов, где подробно изложен вопрос заземления.

Итак,

Суть заземления

Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

Тут ключевое слово – “защитное”. Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает – от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.

Старая вилка без заземляющего контакта

Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.

Корпус утюга частично металлический. Что будет, если вдруг фаза попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

А дальше – как повезёт. Если кожа и пол сухие – просто немного дёрнет…

Но если корпус утюга будет заземлён, то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии. А корпус как был под нулевым потенциалом, так и останется.

Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.

Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник, это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

Напоминаю, что есть время-токовая характеристика автоматического выключателя, и при КЗ автомат будет работать в правой зоне характеристики, где время отключения стремится к нулю. Подробнее – в моей статье про выбор защитного автомата.

То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

Обозначения и перевод названий систем заземления

Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Типы систем заземления

Буквы эти взялись из французского, и означают: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.

  • T — провод подключен к земле .
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение рабочего и защитного нулевых проводов.
  • S — раздельное использование во всей сети рабочего и защитного нулевых проводов.

Также в схемах систем заземления используются следующие обозначения:

  • L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
  • N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
  • PE – Protect Earth, защитная земля, провод защитного заземления.
  • PEN – совмещенный рабочий и защитный нулевой проводник.

Краткое описание работы систем заземления

Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

Возникает путаница в терминологией – одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.

Подробнее о перекосе фаз, чем он опасен, и как с ним бороться – в другой моей статье.

ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

Скачать ПУЭ у меня , в разных вариантах.

Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

Вообще, заземление это более широкое понятие, чем зануление.

Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?

Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.

Тут важными считаю две вещи:

  1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
  2. Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.

Подробно пишу об этом в статье про обрыв нуля в однофазной и трехфазной цепях.

В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновении к фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

Схемы систем заземления

Система TN-C

TN-C – старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.

Схема системы заземления TN-C. Для однофазной системы L1, L2 отбросить.

Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником – нулевая разность потенциалов, и прикосновение к нему безопасно.

Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно “притягивают” к земляному потенциалу через некоторые промежутки по ходу линии.

Земля (то, из чего состоит наша планета) – универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.

В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

Система TN-C в настоящее время официально запрещена, и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.

Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C – это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это – удорожание всей электропроводки минимум на треть.

Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему “это” называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет “типа” заземлён.

Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

Первыми “ласточками” были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем – цепляли корпус машины на трубу водопровода или к нулевому проводу.

Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все “зануленные” приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим – человек коснулся фазного провода. Ток раздваивается – часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть – через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.

Однако, ПУЭ прямо говорит – в системе TN-C применение УЗО запрещено. Почему?

Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО – это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN – проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается “заземление” в системе TN-C.

ПУЭ также говорит, что защитный проводник (в данном случае – PEN) ни при каких условиях не должен разрываться, и должен быть всегда подключен к заземляемому устройству.

Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C.

Вот хороший рисунок, иллюстрирующий ситуацию:

УЗО – применение в различных системах заземления

Я вас так напугал, что по любому возникнет вопрос – как теперь с этим жить?

Отвечаю. Для ухода от этой “нехорошей” системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

Таким образом, мы перейдём на гораздо более безопасную систему – TN-C-S, о которой я расскажу чуть ниже.

На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.

Другой вариант – переход к системе ТТ, в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

Заземление в квартире с проводкой TN-C

В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

Я думаю, что тут есть два приемлемых варианта.

1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание – на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.

Система TN-S

В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.

Схема и описание системы заземления TN-S

Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

Система TN-С-S

Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.

Схема и описание системы заземления TN-C-S

При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

Система TT

Terra – Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.

Схема и описание системы заземления TT

Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

Система IT

Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

Однако, в системе IT источник питания полностью изолирован от земли – и ноль, и (естественно)) фаза.

В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

Подробнее я писал об этом в статье про подключение генератора Хутер.

Минус такой системы – при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

Видео про заземление

Пожалуй, самое адекватное и понятное видео про заземление, которое я видел. Посмотрите, если кому показалось, что я пишу слишком скучно:

Заземление системы вентиляции: правила и тонкости устройства защитного контура

Вы когда-нибудь испытывали удары током, прикасаясь к металлическим корпусам домашней техники? Одной из причин угрозы поражения электрическим зарядом является отсутствие или неправильное заземление системы вентиляции в частном доме. Его устройство требуется для безопасного использования электрооборудования.

Согласитесь, что даже слабые импульсы не вызывают позитивных эмоций. А у людей с кардиостимуляторами последствия таких прикосновений могут быть особенно печальными.

Проверить правильность и целостность заземления не представляет особого труда. Не стоит ради этого очень часто приглашать электриков. Мы поможем вам достаточно глубоко разобраться во всех тонкостях контроля электробезопасности системы домашней вентиляции.

Физическая суть процесса заземления

Красиво смонтированная и убранная в стены или каналы электропроводка, как и полное отсутствие электрических устройств в системе вентиляции, не гарантируют от травмы при контакте с ее металлическими частями. Только надежное соединение токопроводящих внешних конструкций вентиляционного оборудования с заземлением обеспечит вам уверенность в безопасности.

Части воздуховодов, корпуса вентиляторов из металла и других электропроводящих материалов, не находящихся в рабочем режиме под напряжением, положено заземлять. Такие требования прописаны в Правилах устройства электроустановок (ПУЭ).

Электрический заряд на доступных для прикосновения элементах может появиться от повреждения изоляции близлежащих проводов, приборов или при накоплении статического электричества. Заземление означает, что при возникновении случайного электричество заряда, он будет утекать с воздуховода в землю.

Прикосновение человека к заземленному воздуховоду становится травмобезопасным. Но только в том случае, когда величина электрического сопротивления вашего тела (приблизительно 1 кОм) выше, чем у металлического заземляющего проводника

Из школьного курса физики нам всем известно, что электроток идет по пути наименьшего сопротивления. Если сравнить, например, со свободным потоком случайно пролитой воды, то аналогия такая – вода не потечет вверх или вбок, а согласно силе земного притяжения устремится вниз. Так и с электрическим зарядом, случайно попав на заземленный воздуховод он утечет глубоко в землю к заземлителям контура дома.

Электропроводимость человека можно уменьшить за счет дополнительной изоляции от земли и других электропроводников. Для этого используют специальную защитную одежду, обувь. А можно и увеличить, за счет влажного незащищенного участка кожи.

Большему риску подвергается человек со встроенным металлическим медицинским прибором. Или увешанный различными металлическими украшениями. Еще сопротивление току снижается у людей в состоянии алкогольного опьянения.

Из чего состоит заземление?

Контур заземления представляет собой простую схему из двух элементов – проводников и заземлителей.

На всем протяжении воздуховодов, расположенных внутри помещений и снаружи дома, их внешние электропроводящие части, в нормальном рабочем режиме не находящиеся под напряжением, должны быть соединены в единую электрическую цепь. Не менее чем в двух точках эта связка прочно присоединяется к контуру заземления.

Для эффективности должен быть хороший контакт между отдельными элементами контура. Присоединение деталей корпуса воздуховода проводниками к системе заземления нужно производить не реже чем через каждые 40-50 метров

Выполнять заземление воздуховодов вентиляции необходимо в соответствии с нормами ПУЭ. Правила предписывают применять стальные полосы, медные провода или непосредственное соединение с заземленными трубопроводами, другими элементами конструкций. Обычно принято объединять заземление воздуховодов с общей системой заземления дома.

Классификация и типы заземлителей

Эти элементы заземляющего контура любого типа находятся непосредственно в грунте. Заземление обеспечивает стекание электрического заряда в землю от корпусов и прочих нерабочих токопроводящих частей вентиляционного оборудования.

Заземлители бывают двух видов – естественные и искусственные. По нормам ПУЭ предпочтительно использовать естественные заземлители.

В частном доме к ним относятся:

  • металлические трубопроводы, броня силовых кабелей;
  • заглубленные железобетонные колонны, фундаменты;
  • металлические уличные конструкции, например, забор.

Запрещено использовать в качестве естественных заземлителей водопроводные и канализационные трубы.

Прежде чем присоединяться к разрешенным видам естественных заземлителей, следует определить их проводимость. Положения ПУЭ регламентируют максимальное значение сопротивления растеканию заземлителей. Для источников трехфазного/однофазного тока напряжением 380/220В его величина должна быть не более 4 Ом.

Искусственные заземлители применяют после определения сопротивления растеканию естественных заземлителей. В том случае, когда измеренные специальным прибором значения превышают нормы ПУЭ

Чтобы заказать измерения, нужно обратиться в любую сертифицированную электролабораторию. Вам должны выдать протокол с результатом замеров и копии заверенных документов, удостоверяющих допуск специалистов, соответствие приборов метрологическим требованиям.

Отличия защитной и рабочей системы

Заземляющие проводники от воздуховодов могут присоединяться к главной заземляющей шине (ГЗШ) или к шине защитного заземления в электрощитах. При условии, что данное оборудование имеется в доме, где уже смонтирован, при необходимости, контур заземления.

Обычно ГЗШ располагают в технических помещениях, гаражах, мастерских. Их можно легко использовать и в схеме заземления системы вентиляции

Если вы уже определились с тем, какие воздуховоды в доме по правилам нужно обязательно заземлять, то не перепутайте места присоединения. Дело в том, что в электрощитах имеется рабочая заземляющая шина. Она предназначена для рабочей функции, а не для защитной.

Рабочий нулевой проводник (N) является четвертой жилой питающего силового кабеля, где присутствуют три фазных провода (L). Он связан с нейтралью источника питания. В электрощите этот нулевой проводник соединяется с корпусом щита и шиной рабочего заземления.

Бывают кабели со специальной изолированной токопроводящей оплеткой, броней, которая может служить естественным заземлителем. Или с защитной заземляющей жилой (PE).

Она также соединяется с корпусом щитка и с другой заземляющей шиной, но уже не рабочей, а защитной. Не факт, что в вашем доме такой усиленный дорогой кабель использован в силовой схеме электропитания.

Заземляющие проводники от вентиляционного оборудования нужно присоединять к шине защитного нуля PE. Не перепутайте с шиной рабочего нуля N

С помощью рабочего нулевого проводника подключаются к электропитанию все приборы напряжением 220 В. То есть в розетке есть два контакта «фаза» и «ноль». Об этом осведомлены все домашние умельцы.

В евро образцах розеток присутствует еще заземляющий контакт. Никогда нельзя путать эти два совершенно разных понятия – заземление и зануление. Последствия могут быть печальными и для пострадавшего, и для собственника частного дома. Ведь именно домовладелец несет ответственность за безопасную работу всего оборудования.

Как сделать заземление воздуховодов?

Между фланцами необходимо смонтировать гибкие медные шунтирующие перемычки, если на воздуховодах отсутствуют заводские. Болтовое соединение, даже выполненное без изолирующих прокладок, вряд ли будет соответствовать правилам.

Так как переходное сопротивление контакта должно быть менее 0,1 Ома. Допускается соединение стыков металлоконструкций с помощью сварки стальных скоб.

Заземляющие проводники присоединяются:

  • через переходные шинки к болтам фланцев или других разъемных соединений;
  • обжимным хомутом, зачищенным и обработанным токопроводящей смазкой;
  • с помощью сварки или надежных разъемных соединений к несущему каркасу.

Выполнить видимое заземление нужно в начале и в конце воздуховода. В качестве переходных шинок можно использовать медные наконечники.

Правила требуют обязательного заземления воздуховодов, не зависимо от других принятых мер защиты, в том числе от статического электричества

Сечение стальных заземляющих проводников должно быть не менее 75 мм2. У медного проводника толщина сечения допускается от 10 мм2.

Заземлять проводящие ток части корпусов вентиляторов с контуром следует отдельными проводниками. Последовательное соединение вентиляторов с заземлением воздуховодов не допускается, должна быть только параллельная схема.

Монтаж заземлителей защитного контура

При реконструкции или строительстве частного дома отсутствующее заземляющее устройство тоже можно выполнить своими руками. Эффективность контура зависит от выбранной схемы соединения, типа и удельного сопротивления грунта.

Расположение и количество электродов можно осуществить по любой из предлагаемых схем. Необходимого сопротивления добиваются за счет увеличения или длины электрода, или количества заземлителей

Сопротивление заземляющего устройства, используемого исключительно только для защиты человека от поражения статическим электричеством воздуховода, может быть увеличено до 100 Ом. Со способами измерения сопротивления ознакомит следующая статья, прочесть которую мы рекомендуем.

Все этапы скрытых работ при монтаже заземляющего контура желательно сфотографировать. Распечатанные бумажные фотографии, нарисованные от руки схемы с точными размерами и указанными материалами, храните вместе с протоколами испытаний.

Это серьезные документы, которые называются паспортом заземляющего устройства. С их помощью можно контролировать изменения контура, планировать ремонты и даже снижать тарифы страховой компании при оформлении полиса на дом.

Типичные ошибки домашних мастеров

Самостоятельное заземление может быть выполнено безупречно. Но иногда невнимательность, спешка, невысокие практические навыки приводят к погрешностям в монтаже.

Наиболее распространенные распространенные недочеты и огрехи:

  • Слабый контакт из-за защитного покрытия разъемных соединений;
  • Несоответствие нормам размеров заземляющих проводников;
  • Быстро разрушающийся материал элементов системы заземления;
  • Соединение нулевого рабочего и защитного проводников.

Почему-то многие советуют располагать заземлители вдали от дома, выбирая цифры расстояния из глубины своего сознания. Все данные установки носят рекомендательный, но необязательный характер. Никакой опасности для человека контур не представляет, никаких ограничений в правилах по расстоянию нет.

Соединение заземления воздуховодов с контуром заземления молниеотводов не допускается. Огромный ток, протекающий по заземлению при попадании молнии, может вывести из строя всю вентиляционную систему

Некоторые «знатоки» советуют для лучшей проводимости насыпать в грунт к заземлителям соль. Не нужно слушать дилетантов, советуйтесь с профессионалами.

Действительно, в начале за счет повышения влажности возможно незначительное снижение сопротивления растеканию контура заземления. Но металлические элементы в такой среде быстро разрушатся за счет ускорения процессов коррозии заземлителей.

Проверка системы техническими службами

Осматривать заземление домашнего вентиляционного оборудования рекомендуется 2 раза в год весной и осенью. Обнаруженные обрывы, коррозию, прочие дефекты видимых наружных соединений нужно устранять как можно быстрее.

Проверка работоспособности защитного устройства с выборочным вскрытием грунта проводится не реже, чем раз в 12 лет. Одновременно измеряются сопротивления контактов воздуховода с заземлением, сопротивление растеканию контура заземления

Проводить измерения с привлечением электриков лучше в летнюю сухую погоду или в зимние заморозки. В этих условиях повышается удельное сопротивление грунта. А это значит, что величина сопротивления растеканию заземляющего контура будет максимальной. Что обеспечит его надежность, соответствие норме во все прочие сезоны.

Зачем нужно заземлять воздуховоды?

Игнорирование грамотного проектирования и монтажа заземления системы вентиляции владельцы частных домов объясняют чаще всего нежеланием тратить лишние деньги. Почему-то люди, не имеющие специальных знаний в данной области, считают, что электробезопасностью можно здесь пренебречь.

Прежде чем думать о ложной экономии средств, нужно познакомиться с возможными трагическими последствиями из-за отсутствия заземления. Не позаботиться об обязательной защите вентиляционного оборудования может только самый безответственный домовладелец

В России электротравмы являются причиной смерти в 2,7% несчастных случаев. За этими сухими цифрами скрываются конкретные человеческие жертвы. Суть в том, что электрический ток настигает неожиданно. Он не имеет запаха, цвета, его не увидишь и не почувствуешь, пока не прикоснешься или не определишь с помощью приборов.

Процесс присоединения металлических частей вентиляционного оборудования к заземляющим устройствам требует особой осторожности. Соблюдайте меры безопасности при работе на высоте, со сварочным оборудованием, с электроприборами.

Выводы и полезное видео по теме

Монтаж контура заземления в частном доме:

Состав вытяжной системы вентиляции здания:

Корпус вентилятора, воздуховоды и прочие элементы, на которых может оказаться электрический заряд, должны быть безопасны для случайного прикосновения человека.

Все заземляющие проводники, электроды, естественные заземлители имеют нормированные правилами электрические характеристики. Грамотно рассчитанная схема и правильно смонтированные защитные элементы прослужат вам много лет. Важно только периодически проводить техобслуживание и замерять электрические параметры частей заземления.

В соответствие с действующими техническими нормами (ПУЭ, в частности) основной элемент, обеспечивающий безопасные условия эксплуатации электроустановок – это заземляющее устройство (ЗУ). Большинство специальных приборов защиты, устанавливаемых в цепях питания электросетей, гарантированно срабатывают лишь при его наличии. Поэтому так важно рассмотреть вопрос, что собой представляет типовой контур заземления (ЗК) и как он работает.

Что является заземляющим контуром

Чтобы понять, что такое контурный заземлитель – следует представить его как систему, состоящую из металлических стержней, связывающих их полос и набора медных соединительных проводников. Такая сборная конструкция обеспечивает надежный контакт токопроводящего корпуса электроустановки с фактической землей (почвой).

При выяснении вопроса о том, что является заземляющими контурами, следует понимать, что основной их компонент – это одиночный электрод подходящего размера и сечения, забиваемый в грунт на определенную глубину. Для создания распределенной контурной системы согласно действующим техническим требованиям должна использоваться группа штырей, соединенных между собой металлическими полосами.

Как это работает

Чтобы всем было понятно, для чего нужны контуры заземления – рассмотрим принцип действия составной конструкции. Защитный заземляющий контур работает следующим образом:

  • За счет качественного монтажа заземляющих жил и хорошего контакта с грунтом металлическая распределенная система обеспечивает идеальные условия для стекания аварийных токов в землю.
  • Благодаря этому опасный для человека потенциал, появившийся на корпусе электрооборудования во внештатном режиме (при нарушении изоляции фазного провода, например), резко снижается.
  • Надежное стекание тока в землю обеспечивается низким переходным сопротивлением заземлителя, который является частью защитного контура.

Появление значительных по величине аварийных токов приводит к срабатыванию установленных в питающих цепях устройств защиты (как автоматов, так и предохранителей).

В результате питающая сеть полностью отключается, предотвращая возможные негативные последствия. При подключении контура заземления основное внимание уделяется созданию условий, обеспечивающих эффективный контакт как штырей, так и полос с грунтом.

Из чего состоит заземление

В состав заземляющей системы согласно ее определению (смотрите ПУЭ) входят такие обязательные элементы, как:

  1. Сам ЗК, обустраиваемый на основе металлических уголков площадью поперечного сечения не менее 100 мм квадратных или отдельных штырей диаметром порядка 20 мм.
  2. Комплект специальных проводников (медных шин), позволяющих в жилых домах заземлять электрические приборы.

Обратите внимание: Иногда как отдельный элемент рассматривается заземляющий спуск, обустраиваемый вдоль стены здания (в устройствах защиты от молний, например).

В зависимости от своего расположения относительно здания защитные конструкции могут быть внешними и внутренними. Рассмотрим как нужно обустраивать каждый из представленных видов контуров, чтобы добиться наилучших результатов.

Внешний контур

При обустройстве наружного контура заземления необходимо учитывать качество и состав грунта в месте расположения его элементов. Хозяева самостоятельно отстроенного дома обычно знают, на какой почве он стоит, и сразу могут определить, как она влияет на проводимость. В противном случае потребуется помощь специалистов по геодезии.

При самостоятельном проведении работ важно знать, что грунты бывают:

  • чисто глинистыми;
  • суглинистыми;
  • торфяными;
  • черноземными;
  • гравийными и скалистыми.

В реальных условиях в пределах домашнего участка чаще всего встречаются первые два класса почв или их разновидности (суглинок пластичный, глинистые сланцы и подобные им). Для различных типов грунтов их удельные сопротивления имеют следующие значения:

  • Глина пластичная и мягкий торф – 20-30 Ом·/метр.
  • Для суглинка с содержанием золы и пепла, а также простой садовой земли этот показатель составляет 30-40 Ом/метр.
  • Черноземные земли и глинистые сланцы, а также глина полутвердая имеют сопротивление, близкое к значениям 50-60 Ом/метр.

С точки зрения организации внешнего контура заземления эти почвы – самые подходящие, поскольку в них сопротивление растеканию имеет небольшую величину.

Грунты с большими значениями сопротивлений представлены такими видами, как:

  1. Полутвердый суглинок, иногда определяемый как смесь глины и песка, а также так называемая «влажная супесь», имеющая средний показатель 100-150 Ом/·метр.
  2. Содержащий глину гравий и влажный песок – 300-500 Ом/·метр.

А такие «жесткие» грунты, как скала, гравий и сухой песок совершенно неспособны обеспечить надежное заземление. В этих условиях принимаются специальные меры, позволяющие понизить сопротивление заземляющих контуров в месте расположения штырей.

Дополнительная информация: Они чаще всего сводятся к искусственному изменению состава почвы. Как пример – добавление в нее раствора поваренной соли.

Еще один вариант, позволяющий найти выход из сложившейся ситуации – обустройство глубинных заземлителей, достающих до слоев более «легкого» состава. Но этот подход к тому, как обустроить наружное заземление, достаточно трудоемок и обойдется недешево.

Контур заземления внутри объекта

При расчете элементов внутреннего контура заземления необходимо учитывать, что смонтированная внутри здания токопроводящая полоса должна охватывать периметр каждого из имеющихся в нем помещений. К открыто проложенной вдоль стен и вблизи от пола заземляющей шине подсоединяются все установленные в них электроустановки и приборы.

Обратите внимание: В небольших по размеру помещениях (в жилых квартирах или частных домах) вместо ЗК монтируется типовой щиток со специальной планкой. Ее принято называть главной заземляющей шиной (ГЗШ).

Заземляющая шина в распределительном шите

В этих условиях особое внимание уделяется таким составляющим, как заземляющие проводники (соединители, предназначенные для подключения бытовых приборов и ванны непосредственно к заземлению).

Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи). Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже).

Главная заземляющая шина

Техника монтажных работ

Грамотный подход к обустройству ЗК состоит в правильности выбора места под него, а также в соблюдении требований действующих нормативов в части проведения основных монтажных работ.

Выбор места под ЗК

Перед устройством контура заземления важно подобрать место для размещения его элементов. Желательно – неподалеку от дома (его обычно рассчитывают устанавливать на удаление не более 2-х метров, что позволит выиграть на длине проводников).
Дополнительная информация: При выборе участка под заземление в первую очередь следует учесть, чтобы эта площадка располагалась на контролируемой хозяином территории.

Для этих целей подойдут такие зоны, как:

  • участок огорода (кроме грядок с картофелем);
  • палисадник или клумба;
  • парковая зона, непосредственно примыкающая к дому.

Если грунт на прилегающей к строению местности имеет высокое удельное сопротивление – допускается установка системы штырей КЗ на более удаленной дистанции.

Обратите внимание: В этом случае придется смириться с излишними расходами на приобретение медных шин.

В любом из рассмотренных случаев при выборе места под ЗК следует предусмотреть все возможные варианты его использования в будущем (пусть даже и в очень отдаленной перспективе). Это позволит избежать ненужных издержек на перенос конструкции в ситуации, когда в данной зоне потребуется разбить детскую площадку, например.

Монтаж контура заземления

В зависимости от выбранной площадки (ее формы и размеров) при монтаже ЗК могут применяться различные схемы. Штыри в нем могут располагаться как в линию, так и в виде треугольника.

Важно! Независимо от используемой схемы, количество вертикально вбиваемых заземлителей должно быть не менее трех штук.

В том случае, когда выбрана треугольная конструкция, порядок обустройства ЗК выглядит следующим образом:

  1. Сначала на этом месте размечается площадка соответствующей конфигурации со сторонами примерно 2,5-3 метра.
  2. Затем вырывается котлован с размерами чуть большими, чем это обозначено разметкой.
  3. Вырытый в земле приямок должен повторять форму равнобедренного треугольника и иметь глубину не менее полуметра (при ширине порядка 50-70 см.).
  4. После этого по углам треугольного котлована с небольшим отступлением от стенок вбиваются три стальных штыря (отрезка арматуры) на глубину не менее 2-х метров.
  5. И, в завершении все они соединятся между собой стальными полосами (делается это посредством сварки, которой в данной ситуации следует отдать предпочтение).

В результате должна получиться конструкция, похожая на приведенную ниже.

Контур заземления по схеме треугольник

Сечения проводов заземления от контура не должно быть менее 12-16 мм квадратных.

Для экономии сил и времени вырывать приямок под штыри можно не полностью. Достаточно будет выбрать землю только из канавок, в которые укладываются затем стальные соединительные полосы. На заключительной стадии сварных работ уже готовый заземлитель присыпается составом с низким удельным сопротивлением (золой или пеплом, например). Со временем содержащиеся в добавках соли растворятся в земле, что обеспечивает снижение сопротивления растеканию аварийного тока.

Параметры заземлителей (вертикальное расположение)

При проведении расчетов контуров заземления вертикального типа необходимо руководствоваться следующей формулой:

Приведенные в ней величины расшифровываются, как указано ниже:

R0 – величина расчетного сопротивления одиночного электрода в Омах.

Рэкв – значение удельного сопротивления почвы, уже рассмотренное ранее в главе о наружном ЗК.

L – длина отдельного электрода, входящего в состав системы заземления.

D – диаметр или соответствующий сечению размер штыря.

Т – расчетное расстояние от условного центра каждого из электродов до земной поверхности.

Для того чтобы получить требуемое значение сопротивления R0 (согласно ПУЭ оно не должно превышать 30 Ом) следует подбирать входящие в формулу переменные величины.

Обратите внимание: В случае если из-за особенностей грунта в данной местности установка вертикальных стержней невозможна – расчет величины сопротивления производится по формуле для горизонтальных заземлителей.

Перед тем как рассчитать ЗК следует учитывать, что для монтажа горизонтальной конструкции потребуется намного больше усилий и затрат по времени (а также значительных расходов медного материала). Кроме того, обустроенное таким способом заземление очень чувствительно к погодным условиям.

Именно поэтому считается, что лучше потратиться на обустройство вертикальных стержней, чем пытаться преодолеть недостатки горизонтальных заземляющих систем.

Тестирование

По завершении монтажных работ необходимо протестировать контур заземления на нормируемые показатели. Для испытания потребуются точные измерительные приборы, не всегда имеющиеся в распоряжении пользователя.

Проверка контура заземления

В отсутствие требуемого оборудования следует воспользоваться простейшими способами, один из которых описан ниже (он подходит только для частного дома).

Во-первых, нужно взять достаточно мощную нагрузку (такую как утюг, например, с потреблением порядка 2-4 кВт). Во-вторых, необходим специальный переходник с обычной розеткой на одном из концов (второй из них выполняется в виде двух отдельных проводов). Далее, один из них следует оформить в виде изолированного одиночного контакта, а на конце второй сделать толстую петлю.

После этого необходимо подсоединить полученную петлю к свободной колодке на заземляющей шине в щитке. Одиночный изолированный контакт следует воткнуть в фазную клемму розетки, ближайшей к нему (нарушать порядок подключения концов переходника к фазе и земле ни в коем случае нельзя). После всех этих манипуляций нагревательный прибор окажется включенным в питающую цепь через сопротивление самодельного контура заземления. Затем нужно измерить напряжение в сети посредством мультиметра при включенном утюге и без него.

Небольшая разница в показаниях двух описанных измерений означает, что изготовленный заземлитель вполне работоспособен. Если же они отличаются очень намного – контур придется доработать (увеличить количество штырей, например).

О том, как проверить наличие правильного заземления мультиметром, мы рассказывали в соответствующей статье!

Итог

Подводя итог всему сказанному, обратим внимание на рекомендации, которыми делятся опытные мастера:

  • Перед началом монтажных работ желательно подготовить чертеж будущей конструкции, который может понадобиться при дальнейшей эксплуатации. При его наличии легче восстановить в памяти схему расположения штырей.
  • Отрезки электродов допускается вбивать не только в угловых точках треугольника. Их можно располагать как в линию, так и по дуге. Главное, чтобы суммарное сопротивление растеканию тока, создаваемое всей цепочкой, не превышало 3-4-х Ом.
  • Если оно больше нормируемого значения, то систему придется доработать, добавив в нее еще пару стержней.
  • При отсутствии опыта самостоятельной проверки сопротивления заземления — лучше всего пригласить специалиста.

После ознакомления со всеми тонкостями процесса сборки и тестирования ЗК, попытаться изготовить его своими руками может каждый желающий.

Видео по теме

Для того чтобы в совершенстве освоить процесс обустройства систем заземления специалисты советуют ознакомиться с примерами расчета ЗК, которые в большом количестве представлены в Интернете. Помимо информационных сайтов рекомендуется просмотреть видео по теме,представленные ниже:

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх