Выключатель вакуумный

Для повышения качества поставляемой от электрических сетей энергии, распределительные устройства комплектуются современными высоковольтными выключателями с вакуумной дугогасительной средой. Благодаря качественному отличию от устаревших автоматических выключателей, вакуумная аппаратура используется и для вновь возводимых подстанций, и для замены коммутационного оборудования на уже существующих.

Ряд преимуществ вакуумных дугогасительных устройств обуславливается более эффективным принципом гашения дуги, создает предпосылки для предотвращения аварийных режимов энергосистемы и позволяет существенно сократить затраты на обслуживание.

Устройство и принцип действия

Вакуумные выключатели предназначены для совершения коммутационных операций в электроснабжающих сетях высокого напряжения. Конструктивно вакуумный выключатель состоит из трех отдельных полюсов или колонок (по одной на каждую фазу). Все колонки устанавливаются на одном приводе посредством опорного изолятора из полимера, фарфора или текстолита. У каждой из них имеются два вывода для подключения ошиновки.

Общий вид вакуумного автоматического выключателя

Устройство вакуумного выключателя.

Из картинки ниже видно, что внутри устройство состоит из двух контактов, подведенных под соответствующие потенциалы полюсов. Один из них выполняется подвижным, второй стационарным, как и в других типах выключателей. Силовые контакты вакуумного выключателя располагаются внутри герметичной камеры, способной сохранять вакуум в течении длительного периода времени (несколько десятков лет). Для чего в состав камеры включаются специальные металлические сплавы и керамические добавки. Именно этот элемент стал камнем преткновения для реализации такого выключателя в 30-е годы прошлого века.

Современные технологии предоставляют возможность сохранения вакуума внутри емкости, в том числе, с учетом динамических нагрузок, которые ей приходится претерпевать во время коммутаций. Для постоянного поддержания состояния сильно разреженной газовой среды, внутри вакуумной камеры, устройство комплектуется сильфонным компонентом. Он исключает возможность проникновения воздуха или другого газа внутрь вакуумной камеры при перемещении подвижного контакта.

Конструкция вакуумного выключателя

Принцип гашения электрической дуги.

При разрыве контактов между поверхностями возникает ионизация пространства. Если в воздушных выключателях с методом электромагнитного дутья эту ионизацию искусственно растягивают на несколько метров, а в элегазовых и масляных выключателях стараются погасить диэлектрическим материалом, то в вакуумных применяется другая технология. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное к выделению заряженных частиц. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла.

Различные этапы образования плазмыНачало разведения контактовРазвитие ионизацииЗаключительные процессы

Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения, их место быстро занимает пустое пространство с высокой электрической прочностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Но чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

Типы вакуумных выключателей

Как и любая другая электротехническая продукция, вакуумные выключатели подразделяются на несколько типов, в зависимости от класса напряжения, для которого предназначен аппарат. Поэтому условно их можно подразделить на:

  • Устройства на 6 – 10 кВ;
  • Устройства на 35 кВ;
  • Устройства на 110 – 220 кВ.

Вторым критерием является мощность отключаемого потребителя, в соответствии с которой модели отличаются по максимальному рабочему току или по мощности.

Сфера применения

Если первые модели, выпущенные еще в СССР, обеспечивали отключение, сравнительно небольших нагрузок из-за конструктивного несовершенства вакуумной камеры и технических характеристик контактов, то современные модели могут похвастаться куда более термоустойчивым и прочным материалом поверхности. Это обуславливает возможность установки таких коммутационных агрегатов практически во всех отраслях промышленности и народного хозяйства. Сегодня вакуумные выключатели используются в таких сферах:

  • В распределительных электроустановках как электрических станций, так и распределительных подстанций;
  • В металлургии для питания печных трансформаторов, снабжающих сталеплавильное оборудование;
  • В нефтегазовой и химической промышленности на пунктах перекачки, переключающих пунктах и трансформаторных подстанциях;
  • Для работы первичных и вторичных цепей тяговых подстанций на железнодорожном транспорте, осуществляет питание вспомогательного оборудования и не тяговых потребителей;
  • На горнодобывающих предприятиях для питания комбайнов, экскаваторов и других видов тяжелой техники от комплектных трансформаторных подстанций.

В любой, из вышеперечисленных отраслей народного хозяйствования, вакуумные выключатели повсеместно вытесняют устаревшие масляные и воздушные модели.

Особенности установки выключателя

Установка вакуумного выключателя выполняется в уже имеющиеся ячейки, шкафы КРУ, остающиеся из-под масляных или воздушных выключателей, или монтируются в новую ячейку на этапе строительства распредустройства, подстанции или электроустановки. Болтовые крепления к металлическим конструкциям должны плотно затягиваться, обеспечивая и неподвижность коммутационного аппарата при интенсивных динамических колебаниях.

Весь процесс должен осуществляться в строгом соответствии с требованиями, как указаний завода изготовителя, так и нормативных документов, регламентирующих работу устройств в соответствующей отрасли. Обязательными для применения в любых цепях являются нормативные величины, устанавливаемые ПУЭ. Где указаны расстояния от токоведущих частей до заземленных конструкций, электрические параметры и прочие требования к установке вакуумных выключателей.

Ошиновка производиться металлическими шинами из меди или алюминия, которые перед монтажом предварительно зачищаются для получения минимальных показателей переходного сопротивления.

После завершения установки и подключения управленческих цепей к блоку контроля выключателем или приводу, необходимо осуществить ряд манипуляций и проверок:

  • Очистить поверхность наружных изоляторов от всевозможных засорителей для исключения возможности протекания токов утечки;
  • Проверка работоспособности привода, ручное отключение и соответствие обозначения флажка на нем действительному положению –вкл/выкл;
  • Испытание изоляционных свойств смонтированного устройства посредством подачи напряжения промышленной частоты;
  • Измерение величины переходного сопротивления между контактами;

В случае хранения вакуумного устройства на складе более двух лет, перед подключением к коммутационным цепям необходимо производить комплекс испытаний, чтобы убедиться в прочности промежутка на случай отключения токов кз.

Как осуществляется эксплуатация устройства?

После ввода в эксплуатацию вакуумный выключатель обязательно проходит периодические осмотры и испытания – текущий и капитальный ремонт, профконтроль, осмотр. Которые устанавливаются правилами технической эксплуатации, а также заводскими инструкциями.

Помимо регламентных работ коммутационный агрегат может отключаться от аварийных нагрузок, что может существенно повредить рабочую поверхность контактов. Поэтому после срабатывания в аварийном режиме, обслуживающий персонал обязан произвести внеплановый осмотр коммутационного устройства на предмет выявления подгаров, оплавлений, пятен выброса металла и прочих дефектов, свидетельствующих о возможном снижении проводимости или изоляционных свойств, номинальных характеристик и т.д. Результаты осмотров вакуумного выключателя после аварийных отключений должны заноситься в соответствующий журнал.

Особенности контроля и управления вакуумными выключателями?

Управление может осуществляться как дистанционно, так и вручную. Все коммутационные операции производятся через управленческий блок, который перерабатывает команды и передает их на привод устройства. Универсальный электромагнитный привод позволяет удерживать рабочие контакты в заданном положении. Все современные модели обеспечиваются магнитной защелкой, обеспечивающей четкую фиксацию положения вне зависимости от его исправности.

Информация о работе коммутационного аппарата отображается на блоке управления или передается через управленческие сети на пульт оперативного персонала. Поэтому функции контроля могут осуществляться диспетчерским персоналом через систему телемеханики, где все команды посылаются через оперативные токи и не требуют личного присутствия.

Ручное отключение напрямую воздействует на привод, но требует личного присутствия работников возле ячейки или шкафа выкатного типа.

Пример схемы конструкции привода вакуумного выключателя VF12

Критерии выбора ВВ

При выборе конкретной модели обязательно учитываются следующие параметры:

  • Напряжение электроустановки – в соответствии с которым определяется тип изоляции;
  • Электродинамическая стойкость, в случае возникновения тока короткого замыкания;
  • Термическая стойкость, при удаленных от места установки вакуумного выключателя авариях;
  • Климатическое исполнение.

Производители и распространенные модели

Наиболее известными производителями вакуумных выключателей являются отечественные компании: «Таврида электрик», «НПП Контакт», ОАО «Самарский трансформатор», «ПО ЭЛКО», «РЗВА» и другие. Из зарубежных: Siemens, ABB, HEAG.

В таблице ниже можно увидеть сравнительные характеристики некоторых наиболее популярных вакуумных выключателей.

Преимущества и недостатки вакуумных выключателей

К преимуществам данного вида коммутационных аппаратов следует отнести:

  • Сравнительно небольшие габариты, в отличии от масляных и воздушных;
  • Отличаются малыми габаритами и возможностью быстрой замены, особенно в выкатных ячейках;
  • Не производят такого большого шума при переключениях;
  • Отлично выполняют свои функции не зависимо от положения камер в пространстве;
  • Полностью экологичны и безопасны для здоровья в отличии от элегазовых выключателей;
  • Не требуют дозаправки и содержания отдельного хозяйства для этой цели;
  • Отличаются высокой надежностью.

К недостаткам вакуумных выключателей относят:

  • Неспособность выдерживать большие токи короткого замыкания;
  • Возникновение перенапряжения при отсекании малых индуктивных токов;
  • Малый коммутационный ресурс отключения аварийных токов.

Основные преимущества вакуумных выключателей:

— отсутствие необходимости в замене и пополнении дугогасящих сред, компрессорных установок и масляного хозяйства;
— высокая износостойкость при коммутации номинальных токов и токов КЗ;
— быстрое восстановление электрической прочности (10-50)х1000 В/мкс;
— полная взрыво- и пожарозащищенность;
— надежная работа в случае, когда в процессе отключения малого тока в цепи возникает ток КЗ (дугогасительные устройства маслянных выключателей обычно разрываются);
— широкий диапазон температур окружающей среды (от -70 до +200 °С), в котором возможна работа вакуумных дугогасительных камер;
— повышенная устойчивость к ударным и вибрационным нагрузкам;
— произвольное рабочее положение вакуумного дугогасительного устройства;
— бесшумность, чистота, удобство обслуживания, обусловленные малым выделением энергии в дуге с отсутствием внешних эффектов при отключении токов КЗ;
— высокое быстродействие;
— возможность организации высокоавтоматизированного производства.

Недостатки вакуумных выключателей:
— трудности разработки и изготовления, связанные с созданием специальных контактных материалов, сложность вакуумного производства, склонностью материалов контактов и сварке в условиях вакуума;
— большие капитальные вложения, необходимые для наладки массового производства.

Выключатель вакуумный трехфазный ВВ/TEL (Часть 1)

24 ноября 2011 в 14:00

Одним из лидеров в производстве вакуумной коммутационной техники является предприятие «Таврида Электрик» (г. Москва). Продукция предприятия выпускается под общей маркой TEL. Выключатели вакуумные серии BB/TEL предназначены для коммутации электрических цепей с изолированной нейтралью при нормальных и аварийных режимах работы в сетях переменного тока частоты 50 Гц с номинальным напряжением 6—10 кВ.

Вакуумные выключатели серии BB/TEL — это коммутационные аппараты нового поколения, в основе принципа действия которых лежит гашение возникающей при размыкании контактов электрической дуги в глубоком вакууме, а фиксация контактов вакуумных дугогасительных камер (ВДК) в замкнутом положении осуществляется за счет остаточной индукции приводных электромагнитов («магнитная защелка»).

Отличительная особенность конструкции вакуумных выключателей серии BB/TEL по сравнению с традиционными коммутационными аппаратами заключается в использовании принципа соосности электромагнита камеры в каждом полюсе выключателя, которые механически соединены между собой общим валом.

Оригинальность конструкции выключателей BB/TEL позволила достичь следующих преимуществ по сравнению с другими коммутационными аппаратами:

  • высокий механический и коммутационный ресурс;
  • малые габариты и вес;
  • небольшое потребление энергии по цепям управления;
  • возможность управления по цепям постоянного, выпрямленного и переменного оперативного тока;
  • простота встраивания в различные типы КРУ и КСО и удобство организации необходимых блокировок;
  • отсутствие необходимости ремонта в течение всего срока службы;
  • доступная цена.

Принцип фиксации контактов ВДК в замкнутом положении с применением магнитной защелки в настоящее время активно используется в новых конструкциях вакуумных выключателей ряда различных фирм (GEC Alsthom, Whipp & Bourne, Cooper), однако «Таврида Электрик» является первым предприятием-изготовителем, открывшим дорогу вакуумным выключателям с магнитной защелкой к массовому потребителю (оригинальность выключателей BB/TEL защищена патентом Российской Федерации № 2020631).

Благодаря своим преимуществам вакуумные выключатели BB/TEL широко применяются во вновь разрабатываемых комплектных распределительных устройствах (КРУ, КСО, КРН), а также для реконструкции ячеек КРУ, находящихся в эксплуатации и имеющих в своем составе на момент реконструкции выключатели других конструкций, которые устарели морально и физически.

Устройство и работа выключателя ВВ/TEL

Выключатель вакуумный серии BB/TEL состоит из трех полюсов, установленных на общем основании. Все три полюса имеют одинаковую конструкцию, изображенную на рис. 1 .

Рис. 1. Устройство выключателя ВВ/TEL

Привод вакуумного выключателя серии BB/TEL состоит из электромагнитов (по одному на каждую фазу), электрически соединенных между собой параллельно, и блока управления БУ.

Механически якори 7 приводных выключателей соединены между собой общим валом 10, который в процессе включения и отключения поворачивается вокруг своей продольной оси, и обеспечивает выполнение следующих функций:

  • управление указателем положении выключателя «ВКЛ — ОТКЛ»;
  • ручное отключение выключателя при аварийных ситуациях;
  • управление контактами для внешних вспомогательных цепей с помощью постоянного магнита;
  • предотвращение срабатывания выключателя в неполно-фазном режиме.

Включение выключателя

Исходное разомкнутое состояние контактов 1, 3 вакуумной дугогасительной камеры выключателя обеспечивается за счет воздействия на подвижный контакт 3 отключающей пружины 8 через тяговый изолятор 4. При подаче сигнала «ВКЛ» блок управления выключателя формирует импульс напряжения положительной полярности, который прикладывается к катушкам 9 электромагнитов. При этом в зазоре магнитной системы появляется электромагнитная сила притяжения, по мере своего возрастания преодолевающая усилие пружин отключения 8 и поджатия 5, в результате чего под действием разницы указанных сил якорь электромагнита 7 вместе с тяговыми изоляторами 4 и 2 в момент времени 1 начинают движение в направлении неподвижного контакта 1, сжимая при этом пружину отключения 8.

После замыкания основных контактов (момент времени 2 на осциллограммах) якорь электромагнита продолжает двигаться вверх, дополнительно сжимая пружину поджатия 5. Движение якоря продолжается до тех пор, пока рабочий зазор в магнитной системе электромагнита не станет равным нулю (момент времени 2а на осциллограммах). Далее кольцевой магнит 6 продолжает запасать магнитную энергию, необходимую для удержания выключателя во включенном положении, а катушка 9 по достижении момента времени 3 начинает обесточиваться, после чего привод оказывается подготовленным к операции отключения. Таким образом, выключатель становится на магнитную защелку, т.е. энергия управления для удержания контактов 1 и 3 в замкнутом положении не потребляется.

В процессе включения выключателя пластина 11, входящая в прорезь вала 10, поворачивает этот вал, перемещая установленный на нем постоянный магнит 12 и обеспечивая срабатывание герконов 13, коммутирующих внешние вспомогательные цепи.

Отключение выключателя

При подаче сигнала «ОТКЛ» блок управления формирует импульс тока, который имеет противоположное направление по отношению к току включения и меньшее амплитудное значение (интервал времени 4 — 5 на осциллограммах). Магнит 6 при этом размагничивается, привод снимается с магнитной защелки, и под действием энергии, накопленной в пружинах отключения 8 и поджатия 5 якорь 7 перемещается вниз, в процессе движения ударяя по тяговому изолятору 4, связанному с подвижным контактом 3. Контакты 1 и 3 размыкаются (момент времени 5 на осциллограммах), и выключатель отключает нагрузку.

Ручное отключение выключателя

Ручное оперативное отключение выключателя осуществляется путем механического воздействия на кнопку ручного отключения, которая в свою очередь через толкатель, шарнирно связанный с валом 10 выключателя, воздействует через этот вал на якоря 7 электромагнитов привода. При этом разрывается магнитная система привода, ее магнитная энергия уменьшается, после чего механической энергии пружины отключения 8 оказывается достаточно для размыкания контактов 1 и 3 выключателя.

Кнопка ручного отключения одновременно выполняет функцию указателя положения выключателя «ВКЛ — ОТКЛ».

Ручное включение выключателя не предусмотрено. Для первого включения выключателя, когда на подстанции отсутствует питание цепей оперативного тока, разработан способ включения выключателя электрическим путем от автономного источника питания.

Конструктивные исполнения выключателя ВВ/TEL

В настоящее время выпускаются выключатели двух основных конструктивных исполнений:

  • конструктивное исполнение с межполюсным расстоянием 200 мм;
  • конструктивное исполнение с межполюсным расстоянием 250 мм.

Выключатели конструктивного исполнения с межполюсным расстоянием 200 мм предназначены преимущественно для замены в ячейках КРУ выключателей типов ВМР-10, ВМПЭ-10, ВМПП-10, ВК-10, ВКЭ-10 и других, а также для применения во вновь разрабатываемых ячейках КРУ.

Выключатели данного конструктивного исполнения выпускаются двух модификаций:

  • с выводом толкателя кнопки ручного отключения в сторону силовых токосъемников;
  • с выводом толкателя кнопки ручного отключения в сторону, противоположную силовым токосъемникам.

Выключатели конструктивного исполнения с межполюсным расстоянием 250 мм предназначены преимущественно для замены в камерах КСО и КРН выключателей типа ВМГ-133 и других, а также для применения во вновь разрабатываемых камерах КСО и КРН.

Техническая характеристика выключателей серии BB/TEL

Номинальное напряжение, кВ 10
Наибольшее рабочее напряжение, кВ. 12
Номинальный ток, А. 630, 1000
Номинальный ток отключения, кА 1 2,5 20
Сквозной ток короткого замыкания, наибольший пик, кА 32 52
Нормированное процентное содержание апериодической составляющей, %, не более.. 40 40
Время отключения полное, мс, не более. 25 25
Время отключения собственное, мс, не более. 15 15
Время включения собственное, мс, не более. 70 70
Ресурс по коммутационной стойкости при отключении:
номинального тока, операций «ВО»
50 000 50 000
(60 — 100) % от номинального тока отключения, операций 1 00 100
Ресурс по механической стойкости, операций «ВО». 50 000 50 000
Номинальное напряжение электромагнитов управления, В 220 220
Диапазон напряжений электромагнитов при включении,
% от номинального значения..
85—110 85— 11 0
Диапазон напряжений электромагнитов при отключении, % от номинального значения 65— 1 20 65— 1 20
Наибольший ток электромагнитов управления при номинальном напряжении, А 10 10
Срок службы до списания, лет 25 25
Масса, кг:
исполнение с межполюсным расстоянием 200 мм 32 32
исполнение с межполюсным расстоянием 250 мм 35,5 35,5

Условия эксплуатации выключателей

Вакуумные выключатели серии BB/TEL предназначены для эксплуатации в следующих условиях.

Климатическое исполнение и категория размещения У2 по ГОСТ 15150—69, при этом:

  • наибольшая высота над уровнем моря — до 1000 м;
  • верхнее рабочее значение температуры окружающего воздуха не должно превышать плюс 55 °С, эффективное значение температуры окружающего воздуха — плюс 40 °С;
  • нижнее рабочее значение температуры окружающего воздуха — минус 40 °С;
  • верхнее значение относительной влажности воздуха 1 00 % при температуре плюс 25 °С;
  • окружающая среда невзрывоопасная, не содержащая газов и паров, вредных для изоляции, не насыщенная токопроводящей пылью в концентрациях, снижающих параметры выключателя;
  • рабочее положение выключателей в пространстве — любое.

Устройства управления вакуумными выключателями BB/TEL

Устройства управления вакуумными выключателями серии TEL являются неотъемлемой частью привода этих выключателей, хотя конструктивно они выполняются в виде отдельных модулей и могут быть установлены как в релейном отсеке шкафов КРУ, так и на выкатных элементах этих шкафов.

Устройства управления серии TEL обеспечивают функционирование вакуумных выключателей BB/TEL при управлении ими от любого источника постоянного, выпрямленного или переменного оперативного тока.

В настоящее время выпускаются следующие виды устройств управления:

  • блок управления BU/TEL-220-05;
  • блок управления BU/TEL-220-02.

Для адаптации блоков управления типа BU/TEL-01-220-05 к различным источникам оперативного питания и различным схемам вторичных соединений шкафов КРУ разработаны и выпускаются следующие дополнительные виды устройств управления:

Выбор необходимых устройств управления для организации вторичных цепей модернизируемых КРУ определяется видом источника оперативного питания (аккумуляторная батарея, БПНС, БПТ, УПНС и др.), а также схемой цепей защит и управления этих КРУ. Выбор устройств управления для вновь разрабатываемых КРУ осуществляется на стадии их проектирования.

Предприятием «Таврида Электрик» разработан ряд схем подключения выключателя BB/TEL и устройств управления ко вторичным цепям шкафов различных КРУ.

В настоящее время разработан проект привода БУ/TEL-220-10У2, который совмещает в себе функции всех перечисленных устройств управления и является функционально взаимозаменяемым с большинством приводов других выключателей.

Переключения в электроустановках 0,4-10 кВ распределительных сетей — Приводы масляных и вакуумных выключателей

Страница 4 из 15

Приводы масляных и вакуумных выключателей предназначены для включения, удержания во включенном положении и отключения выключателя за счет энергии, поступающей в них от внешнего источника. По виду используемой энергии приводы могут быть ручными, пружинными, электромагнитными. По способу включения и отключения выключателя приводы разделяют на полуавтоматические, осуществляющие включение выключателя приложением мускульной силы, а отключение — дистанционно от ключа (устройств релейной защиты) и вручную; автоматические, осуществляющие включение и отключение выключателя дистанционно (устройствами релейной защиты и автоматики), а также отключение вручную.
Основными частями привода являются:
силовое устройство, служащее для преобразования подведенной к приводу энергии в механическую, изменяющую оперативное положение выключателя;
операционный и передаточный механизмы, служащие для передачи движения от силового устройства к механизму выключателя и для удержания последнего во включенном положении;
отключающее устройство.
Ко всем системам приводов предъявляются требования надежной работы запирающего механизма, удерживающего выключатель во включенном положении, и наличия механизма свободного расцепления, разобщающего силовое устройство с передаточным механизмом для последующего отключения выключателя в любой момент времени независимо от того, продолжает или прекратила действовать сила на включение.
Рис. 9. Привод ПРБА:
1 — корпус; 2 — съемная крышка; 3 — рычаг управления; 4 — отключающий элемент (электромагнит); 5 — кнопка завода реле минимального напряжения; б — указатель положения выключателя; 7 — регулировочный винт упора; 8 — вспомогательные контакты; 1, IV — положения рукоятки привода при включенном и отключенном выключателе; II — положение указателя при автоматическом отключении выключателя; III — положение указателя при выполнении операции включения или отключения выключателя поворотом вручную рычага управления 3
Рис. 10. Электромагнит отключения выключателя:
1 — катушка электромагнита; 2 — магнитопровод; 3 — подвижный сердечник; 4 — ударник; 5 — контрполюс; б — немагнитная шайба, предохраняющая от прилипания сердечника к контрполюсу; 7 — крышка
Необходимость механизма свободного расцепления связана также с требованием немедленного отключения выключателя действием релейной защиты в случае включения его на неустраненное КЗ.

Ручные приводы

Ручные приводы применяют для маломощных выключателей, когда мускульной силы оператора достаточно для совершения операции включения. Они неприменимы для дистанционного управления выключателем, не могут быть использованы и в схемах АПВ и АВР.
На рис. 9 показан привод ПРБА. Включение выключателя производится рычагом управления 3 перемещением его снизу вверх. Отключение выключателя может быть ручным (реже дистанционным) и автоматическим (действием реле). Для ручного отключения рычаг управления 3 опускают вниз в крайнее положение. При этом указатель положения б остается неподвижным и занимает положение III.
Рис. 11. Встроенное электромеханическое реле максимального тока с выдержкой времени РТВ:
1 — корпус часового механизма; 2 — часовой механизм; 3 — подвижный сердечник; 4 — катушка электромагнита; 5 — контрполюс; 6 — ударник; 7 — каркас катушки электромагнита; 8 — пружина; 9 — немагнитная гильза; 10 — магнитопровод; 11 — переключатель числа витков катушки электромагнита; 12 тяга; 13 — рычаг; 14 — пластина; 15 — головка регулятора выдержки времени; 16 — указатель; 17 — крышка
При автоматическом отключении выключателя боек отключающего элемента воздействует на отключающую планку, поворот которой приводит к отключению выключателя. Рычаг управления 3 при этой операции останется поднятым вверх, а указатель 6 повернется и займет горизонтальное положение II. Таким образом, для суждения о тех операциях, которые были совершены с выключателем, необходимо совместное рассмотрение положений рычага управления 3 и указателя 6.
Для дистанционного и автоматического отключения выключателя в приводе ПРБА установлены отключающие элементы. Чаще всего это электромагнит отключения, реле максимального тока и реле минимального напряжения. Однако возможны и другие комбинации отключающих элементов.
Электромагнит отключения (рис. 10) состоит из катушки 1, магнитопровода 2, внутри которых расположен подвижный сердечник 3 с ударником 4. При замыкании цени катушки электромагнита сердечник
мгновенно втягивается в полость катушки и воздействие его на отключающую планку приводит к отключению выключателя. После размыкания цепи катушки электромагнита сердечник возвращается в исходное положение под действием собственного веса. Электромагнит отключения может работать от сети переменного тока 127, 220 В.
На рис. 11 показан другой отключающий элемент — электромеханическое реле максимального тока с выдержкой времени. Уставки по току срабатывания на реле выполняются переключением числа витков катушки электромагнита 4 с помощью переключателя 11. Выдержка времени срабатывания реле регулируется головкой 15 часового механизма 2. Воздействие ударника б на отключающую планку привода происходит при прохождении через катушку реле тока КЗ, равного или превышающего уставку по току реле, и только по истечении установленной выдержки времени.
Электромеханическое реле минимального напряжения (рис. 12) предназначается для отключения выключателя при исчезновении напряжения. Оно работает следующим образом. При нормальном напряжении на катушке электромагнита 10 сердечник 4 подтянут к контрполюсу 7, а ударник 8 не касается отключающей планки и удерживается во взведенном состоянии собачкой 1 часового механизма.
При исчезновении напряжения в защищаемой цепи, а следовательно, и на катушке электромагнита сердечник 4 опускается вниз, приводя в действие часовой механизм выдержки времени. По истечении времени уставки собачка 1 сдвигается и освобожденный ударник под действием пружины 15 выталкивается вверх, ударяя по отключающей планке привода. Выключатель отключается. Уставка напряжения срабатывания реле регулируется натяжением пружины 14.

Пружинные приводы.

Источником энергии в приводах служат мощные предварительно натянутые пружины. Натяжение пружин обычно осуществляется с помощью электродвигателя, соединенного с редуктором, но возможно и ручное натяжение пружин с помощью съемного рычага. Время натяжения пружин для приводов разных типов от нескольких до десятков секунд.
Операция включения выключателя, выполняемая за счет потенциальной энергии пружин, может происходить лишь после полного их завода, что контролируется специальной блокировкой и сигнализируется указателем готовности привода к работе. В пружинных приводах наиболее распространенных в настоящее время конструкций ПП-67 и ППМ-10 включающие пружины должны заводиться перед каждой операцией включения. Завод пружин возможен как при отключенном, так и при включенном выключателе — в последнем случае для осуществления электрического АПВ.
Отключение выключателя, оснащенного пружинным приводом ПП-67 или ППМ-10, выполняется за счет энергии специальных отключающих
Рис. 12. Встроенное электромеханическое реле минимального напряжения с выдержкой времени РНВ:
1 — собачка часового механизма; 2 — рычаг; 3 — корпус; 4 — подвижный сердечник; 5 — зажимы; 6 — немагнитная гильза; 7 — контрполюс; 8 — ударник; 9 — магнитопровод; 10 — катушка электромагнита; 11 — каркас катушки; 12 — часовой механизм; 13 — пружинодержатель; 14, 15 — пружины
пружин, расположенных в механизме самого выключателя, при его включении.
Встроенные пружинные приводы в зависимости от конструкции барабана с пружинами (см. ниже) могут обеспечивать выполнение двух или большего числа операций включения и отключения выключателя без подзавода пружин.
В приводах устанавливаются электромагниты включения* и отключения, кнопки подачи команд на электромагниты. Имеется указатель готовности привода к выполнению операции включения, а также механический указатель положения выключателя.
Одно из преимуществ пружинных приводов состоит в том, что они не требуют для j своей работы источника постоянного оперативного тока. Питание оперативных цепей управления, оперативных цепей релейной защиты и автоматики, цепей обогрева шкафов комплектных распределительных устройств осуществляется от источников переменного тока (трансформаторов собственных нужд, выносных трансформаторов, подключенных к вводам питающих электроустановку линий).
Рассмотрим некоторые конструктивные особенности упомянутых выше типов приводов.

Рис. 13. Пружинный привод ПП-67: 1 — включающие пружины; 2 — инерционный груз; 3 — вал привода- 4 — конечный выключатель; 5 — электродвигатель; 6 — редуктор; 7 — шестеренчатая передача

Пружинный привод ПП-67 (рис. 13) позволяет управлять выключателем вручную, дистанционно, автоматически, производить АПВ (АВР).
В приводе установлены электромагниты включения и отключения, а также отключающие элементы релейной защиты.

* Электромагнит включения воздействует на рычаги привода, в результате чего предварительно заведенные пружины соединяются с валом выключателя, производя его включение.

Для завода пружин имеется специальный электродвигатель 5 (типа МУН), редуктор 6 и шестеренчатая передача 7. Напряжение на электродвигатель подается автоматически после срабатывания привода на включение выключателя и снимается конечным выключателем 4 после натяжения пружин. Вручную пружины привода заводятся с помощью съемной рукоятки.
Включение выключателя может производиться вручную, нажатием соответствующей кнопки, или дистанционно, а также действием АПВ (АВР). В конце хода включения выключателя заметно уменьшается деформация пружин привода и тяговое усилие их падает. Недостаточное усилие пружин на этом этапе включения компенсируется энергией маховика 2, который поглощает кинетическую энергию в начале включения и отдает ее в конце операции включения выключателя.
Отключение выключателя может выполняться вручную кнопкой «Откл.», дистанционно, автоматически действием релейной защиты. «Отключающие электромагниты воздействуют при этом на отключающую планку привода.

Рис. 14. Пружинный привод с электромоторным редуктором ППМ-10:
1 — заводной рычаг; 2 — корпус; 3 — конечный выключатель; 4 — электродвигатель; 5 — редуктор; б — большая шестерня зубчатой передачи; 7 — ролик ведущей собачки; 8 — шестерня взвода; 9 — спиральная пружина; 10 — штурвал

Пружинный привод с моторным редуктором ППМ-10 (рис. 14) по своему устройству аналогичен приводу ПП-67. Но в отличие от последнего он имеет спиральную пружину 9, встроенную в коробку и закрепленную одним концом на валу привода, другим — к корпусу коробки. Завод пружин производится электродвигателем 4, движение от которого через редуктор 5 и шестерню 6 передается шестерне взвода 8. При этом ролик ведущей собачки 7 упирается в зуб рычага 1, заводя спиральную пружину 9. В конце завода пружины запорно-пусковой механизм привода удерживает ее во взведенном состоянии. Для включения выключателя необходимо воздействовать на запорный механизм и тогда вся накопленная пружиной энергия израсходуется на поворот вала выключателя. Привод рассчитан на выполнение только одной операции включения при полностью заведенных пружинах, на что следует обращать внимание при его эксплуатации.
В нижней части привода встроены отключающие элементы: электромагниты отключения и реле, воздействующие через планку отключения на механизм свободного расцепления.
Отключение выключателя происходит под действием отключающих пружин, расположенных в механизме самого выключателя и заводимых при его включении.

Встроенный пружинный привод размещается в раме выключателя и является его неотъемлемой частью. Особенность такой конструкции состоит в том, что выполнение операций включения и отключения выключателя происходит за счет энергии и тех же рабочих пружин привода.
Привод (рис. 15) состоит из вала привода 1, вала выключателя 4, редуктора 3 с электродвигателем, релейного вала 5, запирающего механизма отключения 15 и запирающего механизма включения 16, электромагнитов отключения 7 и включения 9, пульта местного управления 10, указателя положения 11, указателя готовности привода 13.
Рассмотрим некоторые узлы привода. На валу привода 1 имеется барабан 2, внутри которого размещены спиральные рабочие пружины. Одним концом пружины прикреплены к валу, другим — к барабану.
Устройство для завода пружин состоит из редуктора 3 с электродвигателем. На выходном валу редуктора установлен эксцентрик, преобразующий вращательное движение редуктора в колебательное, которое затем передается обгонной муфте, жестко связанной с барабаном. Так как вал привода удерживается запорным механизмом, то серией колебательных движений барабан 2 поворачивается, заводя рабочие пружины.
Завод рабочих пружин вручную также осуществляется многократными движениями рычага ручного завода. При каждом таком движении барабан поворачивается на небольшой угол, закручивая пружины. Для завода пружин на две операции достаточно повернуть барабан на 360°.
Включающий запорный механизм 16 удерживает вал привода при отключенном положении выключателя и освобождает его при включении выключателя.
Отключающий запорный механизм 15 удерживает вал привода при включенном положении выключателя и освобождает его при отключении выключателя.
Включение выключателя осуществляется подачей напряжения на электромагнит включения 9 дистанционно, от устройства автоматики или нажатием кнопки на пульте местного управления 10. При этом включающий запорный механизм 16 освобождает вал привода и он поворачивается. Вместе с валом поворачивается эксцентрик 20, соединенный тягой с рычагом на валу 4 выключателя. Поворотом вала выключателя на 60 осуществляется включение выключателя. Если пружины привода будут заведены менее чем на две операции, включение выключателя блокируется.
Рис. 15. Встроенный пружинный привод:
1 — вал привода; 2 — барабан с рабочими пружинами; 3 — редуктор с электродвигателем; 4 — вал выключателя; 5 — релейный вал; б — диск на валу приводу; 7 — электромагнит дистанционного отключения; 8 — узел проводки; 9 — электромагнит дистанционного включения; 10 — пульт местного управления; 11 — указатель положения выключателя; 12 — блокировочный штырь; 13 — указатель готовности привода; 14 — вспомогательные контакты аварийной сигнализации; 15, 16 — запорный механизм отключающий и включающий; 17 — вспомогательные контакты положения выключателя; 18 — блокировочный шток; 19 — рычаг; 20 — эксцентрик с поводком, соединяющим вал привода с валом выключателя; 21 — толкатель; 22 — вспомогательные контакты положения привода; 23 — обгонная муфта с обоймами; 24 — рама привода

Рис. 16. Электромагнитный привод ПЭ-11:
1 — шток сердечника; 2 — сердечник; 3 — катушка включающего электромагнита; 4 — удерживающий рычаг; 5, 8 — рычажные передачи; б, 9 — вспомогательные контакты; 7 — вал привода; 10 — рычаг механизма свободного расцепления; 11 — рычаг ручного отключения; 12 — электромагнит отключения; 13 — сборка зажимов; 14 — корпус

Отключение выключателя осуществляется подачей напряжения на электромагнит отключения дистанционно, от встроенных реле (которые воздействуют на релейный вал 5), или нажатием кнопки на пульте местного управления. Работа привода при отключении аналогична работе при включении, но вал выключателя поворачивается в обратном направлении на 60°.

Электромагнитные приводы постоянного тока применяются преимущественно на центрах питания — подстанциях энергосистем, питающих распределительные сети. Для их работы необходимы мощные источники постоянного тока, в качестве которых используются подстанционные аккумуляторные батареи.
На рис. 16 показан наиболее распространенный в сетях 6-10 кВ электромагнитный привод тина ПЭ-11, предназначенный для маломасляных выключателей.
Силовое устройство — электромагнит включения — состоит из магнитопровода с обмоткой 3 и сердечника 2 со штоком 1. Тяговое усилие, необходимое для включения выключателя, создается сердечником 2, который втягивается электромагнитом при прохождении по его обмотке постоянного тока. Усилие, развиваемое приводом, передается выключателю системой рычагов операционного и передаточного механизмов.
После завершения операции включения выключателя цепь включающего электромагнита автоматически разрывается вспомогательными контактами 6 и сердечник 2 под действием силы тяжести (и пружины) опускается вниз.
Для отключения выключателя в обмотку электромагнита отключения 12 подается оперативный ток. Сердечник втягивается электромагнитом, и его боек ударяет в одно из звеньев механизма свободного расцепления 10. Звенья механизма складываются, вал выключателя освобождается и поворачивается под действием встроенных в выключатель отключающих пружин — происходит отключение выключателя.
Для ручного отключения выключателя с места его установки пользуются рычагом 11, воздействующим на механизм свободного расцепления.
Привод имеет электрическую блокировку против повторного включения и последующего отключения выключателей защитой (включение на неустраненное КЗ), когда команда на включение, подаваемая ключом управления, еще не снята. Для блокировки используется вспомогательный контакт, связанный с сердечником отключающего электромагнита.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх