Энергосберегающие системы

Обзор наилучших энергосберегающих систем отопления для частного дома

Стремление к энергосбережению – это насущная потребность человечества. На нашей планете остается все меньше ресурсов, их стоимость постоянно растет, а побочные продукты деятельности человека отравляют среду обитания. Энергосбережение – один из путей решения проблемы. Выбирая энергосберегающее отопление для дома, вы экономите ресурсы, вносите личный вклад в сохранение экологии и создаете комфортный микроклимат в доме. Существует несколько популярных технологий, которые позволяют реализовать эту комплексную программу. Предлагаем обзор энергосберегающих систем отопления для частного дома.

Виды источников энергии

Традиционно для отопления используют несколько источников энергии:

Твердое топливо – дань традициям

Для отопления используют дрова, уголь, торфяные брикеты, пеллеты. Твердотопливные котлы и печи трудно назвать экономичными или экологичными, но применение новых технологий позволяет существенно сократить потребление топлива и, как следствие, количество продуктов сгорания, выбрасываемых в атмосферу.

В последние годы увеличивается количество продаж газогенераторных печей и котлов. Их преимущества – полное сжигание топлива, использование пиролизного газа в качестве источника тепла. Установка такого котла экономит энергоресурсы. Приобретать такие твердотопливные котлы мы советуем у проверенных ритейлеров.

Принцип работы пиролизного (газогенераторного) котла основан на использовании пиролизного газа, который применяется в качестве топлива. Древесина в таком котле не горит, а тлеет, благодаря чему порция топлива прогорает гораздо дольше обычного и дает больше тепла

Жидкое топливо – дорого, но популярно

Это сжиженный газ, дизтопливо, отработанное масло и т.п. На отопление жилища всегда расходуется большое количество жидкого топлива, и пока не придуманы способы заметного сокращения расхода. Это отопительное оборудование требует тщательного ухода, регулярной чистки от сажи и копоти.

Большая часть видов жидкого топлива имеет еще один недостаток – высокую стоимость. И все же, несмотря на явные недостатки, жидкотопливные котлы на втором месте по популярности после газовых.

Жидкотопливные котлы удобны в тех случаях, если поблизости от дома нет магистрали газопровода и нужно обустроить полностью независимую систему отопления

Газ – доступно и дешево

В традиционных газовых котлах расход топлива велик, но конденсационные модели решили эту проблему. Их установка позволяет получить максимум тепла с минимальным расходом газа. КПД конденсационных котлов может достигать более 100%. Многие модели известных брендов можно переводить на работу на сжиженном газе. Для этого нужно просто сменить форсунку. Еще один энергосберегающий вариант – инфракрасное газовое отопление.

Конденсационные котлы – новое слово в производстве газовой отопительной техники. Они экономично расходуют топливо, отличаются высоким КПД, идеально подходят для обустройства отопления и горячего водоснабжения в частных домах

Подробнее про газовые котлы .

Электричество – удобный и безопасный источник тепла

Единственный недостаток использования электроэнергии для отопления – высокая стоимость. Впрочем, этот вопрос решается: постоянно разрабатываются электрические системы отопления, потребляющие относительно небольшое количество энергии и обеспечивающие эффективный обогрев. К таким системам можно отнести теплые полы, пленочные обогреватели, инфракрасные радиаторы.

Теплые полы чаще всего используют в качестве дополнительной или альтернативной системы обогрева дома. Преимущество этого вида отопления – нагревается воздух на уровне человеческого роста, т.е. реализуется принцип – «ноги в тепле, голова в холоде»

Тепловые насосы – экономичные и экологичные установки

Системы работают по принципу преобразования тепловой энергии земли или воздуха. В частных домах первые тепловые насосы стали устанавливать еще в 80-х годах ХХ века, но на тот момент их могли позволить себе только очень зажиточные люди.

С каждым годом стоимость установок становится все ниже, и во многих странах они стали весьма популярны. Так, в Швеции тепловые насосы отапливают около 70% всех зданий. В некоторых странах даже разрабатываются строительные нормы и правила, обязывающие застройщиков монтировать геотермальные и воздушные системы для отопления.

Тепловые насосы устанавливают жители США, Японии, Швеции и других европейских стран. Некоторые умельцы собирают их своими руками. Это отличный способ получить энергию для обогрева дома и сохранить окружающую среду

Гелиосистемы – перспективный источник энергии

Гелиотермальные системы преобразуют лучевую солнечную энергию для отопления и горячего водоснабжения. На сегодня существует несколько видов систем, в которых используются солнечные панели, коллекторы. Они различаются по стоимости, сложности производства, удобству эксплуатации.

С каждым годом появляется все больше новых разработок, возможности солнечных систем расширяются, а цены на конструкции снижаются. Пока их нерентабельно устанавливать для крупных зданий промышленного назначения, но для отопления и горячего водоснабжения частного дома они вполне подойдут.

Гелиотермальные системы требуют только начальных затрат – при покупке и монтаже. После установки и настройки они работают автономно. Для отопления используется энергия солнца

Тепловые панели – энергосберегающее отопление

Среди энергосберегающих систем отопления особую популярность приобретают тепловые панели. Их преимущества – экономное потребление электроэнергии, функциональность, удобство в эксплуатации. Нагревательный элемент расходует 50 Ватт электроэнергии на прогрев на 1 м², в то время как традиционные электрические системы отопления потребляют не менее 100 Ватт на 1 м².

На тыльную сторону энергосберегающей панели нанесено специальное теплоаккумулирующее покрытие, благодаря чему поверхность нагревается до 90 градусов и активно отдает тепло. Обогрев помещения происходит за счет конвекции. Панели абсолютно надежны и безопасны. Их можно устанавливать в детских, игровых комнатах, школах, больницах, частных домах, офисах. Они адаптированы к перепадам напряжения в электросети, не боятся воды и пыли.

Дополнительный «бонус» — стильный внешний вид. Приборы вписываются в любой дизайн. Монтаж не сложен, в комплекте с панелями поставляются все необходимые крепежные элементы. Уже с первых минут включения прибора ощущается тепло. Помимо воздуха, прогреваются стены. Единственный минус – использование панелей нерентабельно в межсезонье, когда нужно лишь слегка обогреть помещение.

Монолитные кварцевые модули

Этот метод отопления не имеет аналогов. Его изобрел С. Саркисян. Принцип действия теплоэлектронагревателей основан на способности кварцевого песка хорошо накапливать и отдавать тепло. Приборы продолжают нагревать воздух в помещении даже после отключения электропитания. Системы с монолитными кварцевыми электронагревательными модулями надежны, удобны в эксплуатации, не требуют особого ухода и технического обслуживания.

Нагревательный элемент в модуле полностью защищен от любых внешних воздействий. Благодаря этому отопительную систему можно монтировать в помещениях любого назначения. Срок эксплуатации не ограничен. Регулирование температуры осуществляется автоматически. Приборы пожаробезопасны, экологичны.

Экономия средств при использовании электронагревательных модулей составляет около 50%. Это стало возможным потому, что приборы работают не 24 часа в сутки, а лишь 3-12. Время, в течение которого модуль потребляет электроэнергию, зависит от степени теплоизоляции помещения, где он установлен. Чем выше потери тепла, тем большим будет расход электроэнергии. Отопление этого типа используют в частных домах, офисах, магазинах, гостиницах.

Монолитные кварцевые электронагревательные модули при работе не издают шума, не сжигают воздух, не поднимают пыль. Нагревательный элемент замоноличен в конструкцию и не боится никаких внешних воздействий

ПЛЭН – достойная альтернатива

Пленочные лучистые электрические нагреватели – одна из самых интересных разработок в сфере энергосберегающих технологий отопления. ПЛЭН-системы экономичны, эффективны и вполне способны заменить традиционные виды отопления. Нагреватели помещены в специальную термостойкую пленку. ПЛЭН крепят на потолок.

Пленочный лучистый электронагреватель представляет собой целостную конструкцию, состоящую из кабелей питания, нагревателей, экрана из фольги и высокопрочной пленки

Принцип работы такой системы

Инфракрасное излучение нагревает пол и предметы в комнатах, а те в свою очередь отдают тепло воздуху. Таким образом, пол и мебель тоже играют роль дополнительных нагревателей. За счет этого отопительная система потребляет меньше электроэнергии и дает максимальный результат.

За поддержание нужной температуры отвечает автоматика – датчики температуры и терморегулятор. Системы электро- и пожаробезопасны, не пересушивают воздух в помещениях, работают бесшумно. Поскольку нагрев происходит преимущественно с помощью излучения и в меньшей степени благодаря конвекции, ПЛЭН не способствуют распространению пыли. Системы очень гигиеничны.

Еще одно важное достоинство – отсутствие выброса токсичных продуктов горения. Системы не нуждаются в особом уходе, безвредны для здоровья человека, не отравляют окружающую среду. При потолочном инфракрасном обогреве самая теплая зона находится на уровне ног и туловища человека, что позволяет добиться наиболее комфортного температурного режима. Срок эксплуатации системы может составлять 50 лет.

Инфракрасный нагреватель выполняет примерно 10% работы по обогреву помещения. 90% приходится на пол и крупную мебель. Они аккумулируют и отдают тепло, таким образом становясь частью отопительной системы

Что делает ПЛЭН такой выгодной?

Наибольшие расходы покупатель несет в момент приобретения пленочного нагревателя. Конструкция проста в монтаже, и при желании ее можно установить своими руками. Это позволяет сэкономить на работниках. Система не нуждается в техническом обслуживании. Ее конструкция проста, поэтому долговечна и надежна. Окупается она примерно за 2 года и способна служить десятилетиями.

Самый большой ее плюс – существенная экономия на электроэнергии. Нагреватель быстро прогревает помещение и в дальнейшем просто поддерживает заданный температурный режим. При необходимости его легко можно снять и смонтировать в другом помещении, что очень удобно и выгодно в случае переезда.

Инфракрасное излучение оказывает положительное воздействие на здоровье человека, активизирует защитные силы организма. Установив ПЛЭН, владелец дома, помимо отопления, дополнительно получает настоящий физиотерапевтический кабинет

Учебный фильм по монтажу ПЛЭН

В видеоролике показаны все этапы монтажа пленочного нагревателя:

Важность снижения теплопотерь

Цель обзора энергосберегающих систем отопления для частного дома – помочь читателям выбрать самый выгодный способ обогрева жилища. Каждый год появляются новые системы, и информация о них может сэкономить значительные суммы многим людям. Но даже самые прогрессивные энергосберегающие технологии отопления будут бесполезны, если своевременно не позаботиться об утеплении дома.

Хорошие стеклопакеты и утепленные двери помогут сократить теплопотери на 10-20%, качественный теплоизолятор – до 50%, а рекуператор тепла выходящего воздуха – до 30%. Утеплив дом и установив энергосберегающую систему отопления, вы добьетесь максимального результата и будете платить за тепло по минимуму.

  • Ирина

Энергосберегающий обогрев частного дома. Варианты экономии

Энергосберегающая система отопления – это способ экономии электроэнергии и существенный параметр выбора оборудования. Последним словом самых современных технологий в этом плане является солнечный и инфракрасный тип обогрева, монтаж индукционного котла или системы «умный дом». При этом у потребителей всегда есть возможность выбрать самый оптимальный по цене и качеству, максимально доступный вариант. Давайте разберем основные факторы, которые могут повлиять на энергосбережение в системе отопления.

Утепление домовладения

С учётом способности тёплого воздуха подниматься, а холодных воздушных масс оставаться на уровне пола, повышенное внимание уделяется утеплению потолка, пола и стен. Особенно важно такую теплоизоляцию осуществлять при отсутствии в домовладении подвального помещения. Чтобы препятствовать появлению мостиков холода, наружное утепление выполняется, начиная с цокольной части и заканчивая самой верхней точкой кровли. Грамотная теплоизоляция может гарантировать экономию энергии порядка 20-30%.

Каким образом утепление влияет на энергосберегающее отопление? Основная характеристика дома, от которой все отталкиваются – это тепловые потери. Чем сильнее ваш дом похож на термос, тем больше тепла он способен удерживать. Соответственно, это первый фактор любого энергосберегающего отопления.

Кровля и чердачное пространство

Теплоизоляция выполняется каменной ватой или вспененными полимерными материалами, а в качестве покрытия применяются сэндвич-панели. При выборе оптимального способа утепления обязательно принимаются во внимание конструктивные и технические характеристики крыши.

Оконные и дверные проёмы

Старые двери и окна особенно сильно нуждаются в утеплении, но любые теплоизолирующие мероприятия не являются достаточно эффективными. Целесообразно произвести полную замену старых конструкций более современными энергосберегающими системами с двойным или тройным стеклопакетом (с многоконтурным профилем).

Стеновые поверхности

Особенно востребован, с точки зрения энергосбережения, фасадный вариант утепления здания панелями на основе современного экструдированного пенополистирола (50-100 мм) или базальта. Обязательно выполняется предварительная подготовка поверхностей, включая специальное армирование и оштукатуривание водостойкими смесями.

Установка настенного газового котла вместо напольной модели

Замена оборудования напольного типа практичными настенными конструкциями не потребует переделки проектной документации в газораспределительной компании. Такие современные настенные модели обеспечивают обогрев помещений и горячее водоснабжение, представлены несколькими конструкционными элементами:

  • циркуляционным насосом;
  • расширительным бачком;
  • группами безопасности;
  • электронной платой.

Функциональные модели часто дополняют беспроводные программаторы, а также водогрейное оборудование и насосная система с частотным регулированием. Экономичность настенных котлов обусловлена стабильностью КПД и наличием принудительной тяги. Оптимизации затрат также способствует автоматизация система с применением внешних и внутренних датчиков температур. «Умная» техника самостоятельно выбирает самый выгодный режим функционирования системы отопления, что обеспечивает экономию энергозатрат на уровне 5-10%. Как вы уже поняли, таким способом так же можно достичь более энергосберегающего отопления.

Подключение термостата к котлу

На энергосбережение так же влияет и точность работы котла. По умолчанию котел настроен на работу по температуре теплоносителя. Но можно побудить котел к включению и выключению по комнатной температуре.

Воздух остывает гораздо медленнее системы отопления. Поэтому котел будет включаться реже и при этом работать дольше (что довольно таки полезно для газовых котлов). С таким вариантом можно на 5-15% повысить энергосбережение при работе отопления.

Особенности механических моделей

Ручная настройка бюджетной по цене запорно-регулирующей арматуры оборудования помогает поддерживать температуру на заданных потребителем показателях. Неоспоримым достоинством таких моделей является доступная стоимость и лёгкость монтажа. Даже наиболее простые механические термостаты для систем отопления существенно понижают потребление газа.

Особенности электронных моделей

Приборы на основе датчиков выносного типа и программируемого микропроцессора с кнопками управления позволяют задавать показатели нужного температурного режима. Цифровые модели с электронной поддержкой предлагают разные режимы обогрева, а память программируемых термостатов часто отличается предустановленными профилями, которые могут легко заменяться нужными пользователю значениями.

Погодозависимые (метеоуправляемые) регуляторы

Особенностью высокотехнологичных приборов является возможность осуществлять управление отопительной системой в соответствии с наружным температурным режимом. Уличный датчик монтируется на домовладении снаружи, на северной стороне здания, а водоподготовка в системе обеспечивается контроллером (программатором). Тепловой комфорт и экономия топлива может потребовать монтажа дополнительного датчика внутри отапливаемого помещения.

Установка энергосберегающего конденсационного котла

Европейский рынок настенного (навесного) котлового оборудования пополнила конденсационная техника с максимально высоким коэффициентом полезного действия. С технической точки зрения функционирование такого котла базируется на применении специальной горелки и особого по конструкции первичного теплообменника.

Европа делает сильный упор на энергосберегающее отопление. Поэтому многие страны повсеместно переходят на использование конденсационных котлов. Экономичный энергосберегающий эффект при работе конденсационных котлов обеспечивается строгим соблюдением определённых условий эксплуатации:

  • выполнить утепление дверей и окон;
  • установить рекуперационную вентиляцию;
  • выбрать качественную автоматику для управления.
  • Использовать низкотемпературные системы отопления для более энергосберегательной работы котла

При выборе конденсационного котла нужно помнить, что температурный режим на обратной линии не должен повышаться под воздействием байпасных линий, смесителей четырёхходового типа и другого регулирующего оборудования.

Преимущества и недостатки

Применению современных конденсационных котлов сегодня отдаёт предпочтение порядка 70% европейцев, что обусловлено высокими показателями экономичности и другими неоспоримыми достоинствами:

  • экологичность;
  • компактные размеры;
  • не слишком большой вес;
  • точная модуляция нужной температуры;
  • низкотемпературный режим отработанных газов;
  • практически полностью бесшумное функционирование котла.

Для российских владельцев частных домовладений аргументом в пользу отказа от установки конденсационного оборудования стала достаточно высокая стоимость таких устройств. Кроме прочего, приобретение высокотехнологичных приборов не сможет окупиться слишком быстро. Также нужно помнить, что оптимальным вариантом станет установка таких моделей только в системах обогрева с низкотемпературным режимом, включая «тёплый пол».

Энергосберегающие радиаторы

Конструктивные и технические характеристики радиатора оказывают на потребление тепловой энергии незначительное влияние. При этом эксперты отмечают, что монтаж медно-алюминиевых конвекторов в сочетании с котловым оборудованием конденсационного типа позволит сделать эксплуатацию системы отопления экономичной.

Медно-алюминиевые радиаторы

Практичные конвекторы данной серии могут монтироваться при организации как однотрубной, так и двухтрубной отопительной системы (но выкиньте из головы использование однотрубной системы, с ней энергосбережения достичь невозможно). Преимущества таких моделей следующие:

  • энергетическая эффективность;
  • высококачественные комплектующие;
  • незначительный объём теплового носителя;
  • достаточно низкие показатели тепловой инерции;
  • максимальная быстрота выхода на уровень полной мощности.

При конвективном способе обогрева помещений разного назначения с использованием медно-алюминиевых радиаторов обеспечивается максимально равномерное распределение тёплых воздушных масс. Тепловая отдача отмечается при низкотемпературном режиме воды, поэтому нет риска получения ожогов.

Как показывает практика эксплуатации медно-алюминиевых радиаторов, такие отопительные устройства являются в настоящее время отличным вариантом для обустройства индивидуальных систем обогрева с автоматизированным котловым оборудованием, обладают очень высокими показателями теплоотдачи и малой инерционностью.

Энергосберегающие электрические котлы

Важным конструктивным отличием от традиционных моделей является отсутствие ТЭНа, вместо которого установлен электрод или индуктивная катушка. При этом жидкий теплоноситель также является в энергосберегающем электрическом котле своеобразным проводником.

Энергосберегающие электрические котлы обеспечивают возможность организации в частном доме бесперебойного горячего водоснабжения и отопления. Помимо простоты монтажа такие конструкции характеризуются следующими положительными свойствами:

  • небольшие габариты;
  • полностью бесшумная работа;
  • надёжная автоматизация процесса;
  • эстетичный и современный внешний вид.

Недостатком является невозможность эксплуатации такого оборудования в условиях отключения электрической энергии. Для многоквартирных домов с бытовой сетью напряжением 220 В нужно монтировать однофазное оборудование. В частных домовладениях целесообразно подвести сеть 380 В, что позволит обеспечить дополнительную экономию теплового носителя.

Модели с режимом включения/отключения

Благодаря современным автоматизированным системам дистанционного контроля и управления автономной системой отопления, повышается уровень комфорта проживания в частном доме. С этой целью монтируются модели, управляемые телефоном или смартфоном с Интернет-сетью. К неоспоримым преимуществам ДУ-отопления относится:

  • вполне доступная цена;
  • долговечность и надёжность системы;
  • снижение нагрузки на эксплуатируемое оборудование;

Монтаж модели с режимом включения и отключения позволяет достаточно легко экономить энергоносители на обслуживание системы отопления в пределах 45-50%.

Так же современные энергосберегающие электрокотлы способны в режиме реального времени повышать и понижать свою мощность, а не работать в режиме максимальной мощности одной ТЭНы.

Бережем электроэнергию

Одним из лучших способов повышения эффективности электрического котла принято считать монтаж многотарифного счётчика электроэнергии, а также использование дополнительного оборудования, включая тепловой аккумулятор. Благодаря таким устройствам балансируется генерация тепла и его перераспределение в зависимости от времени суток.

В этом случае накопленное в ночные часы тепло (максимальная производительность прибора при низкой цене электроэнергии) эффективно расходуется при пониженной мощности котла днём, во время действия повышенного тарифа. Параметры мощности регулируются таймером устройства в самостоятельном режиме, что обеспечивает экономичный расход электроэнергии.

Читайте так же:

Энергоэффективные
системы отопления:
тенденции, практика, проблемы

Summary:

Энергоэффективные системы отопления: тенденции, практика, проблемы

Energy efficient heating systems: trends, practice, problems

V. L. Granovskiy, Candidate of Engineering, Deputy technical director of LLC «Danfoss»

Описание:

Появившиеся в последнее время нормативы, устанавливающие классы энергоэффективности зданий в зависимости от уровня их теплопотребления, ставят аналогичную задачу и перед отдельными элементами инженерных систем здания. Суть этой задачи состоит в выборе наиболее энергоэффективного оборудования или технического решения по каждому из элементов систем.

Ключевые слова: системы отопления, теплоноситель, класс энергоэффективности, индивидуальный учет тепла, приборы учета, терморегулирование стояков

В. Л. Грановский, канд. техн. наук, заместитель технического директора ООО «Данфосс», otvet@abok.ru

Появившиеся в последнее время нормативы, устанавливающие классы энергоэффективности зданий в зависимости от уровня их теплопотребления, ставят аналогичную задачу и перед отдельными элементами инженерных систем здания. Суть этой задачи состоит в выборе наиболее энергоэффективного оборудования или технического решения по каждому из элементов систем, чтобы в финале процесса проектирования прийти к нормируемому уровню теплопотребления всей системы, соответствующему заданному классу энергоэффективности.

Для системы водяного отопления энергоэффективный уровень теплопотребления может быть обеспечен при следующем наборе функций и возможностей:

  • автоматическое поддержание температурного графика на вводе в здание;
  • качественно-количественное регулирование теплоотдачи системы, включающее терморегулирование на отопительных приборах и стояках;
  • автоматическое поддержание требуемого/расчетного распределения потока теплоносителя по всем участкам системы;
  • индивидуальный учет тепла, мотивированный оплатой по фактическому потреблению.

По конструктивному исполнению, укрупненно, можно выделить следующие варианты энергоэффективных систем отопления:

  • система с горизонтальной поквартирной разводкой трубопроводов с различными конструктивными вариантами поквартирных тепловых пунктов или распределительных щитов, включающими различные комбинации автоматики регулирования, теплообменники контуров отопления и/или ГВС и др.;
  • традиционная система отопления с вертикальными внутриквартирными стояками – однотрубная и двухтрубная, комплексно оснащенная приборами автоматического регулирования и учета тепла.

Возможны и другие конструктивные варианты систем и их комбинации.

Для систем с горизонтальной разводкой потенциал энергоэффективности и набор оборудования, обеспечивающий нормативный уровень теплопотребления, очевиден и описан в работах многих специалистов.

В то же время, потенциал повышения энергоэффективности традиционных вертикальных систем отопления для многих специалистов пока не очевиден. Однако он весьма значительный, и возможность модернизации таких систем следует рассмотреть более подробно, поскольку:

  • данные системы являются наиболее массовыми в применении, особенно в существующем жилом фонде;
  • радикальная конструктивная трансформация таких систем в горизонтальные в ходе модернизации слишком затратна.

Набор рекомендуемых ниже мероприятий позволяет довести уровень теплопотребления традиционных вертикальных систем отопления, практически, до нормативного по самому высокому классу энергоэффективности.

Модернизация узла ввода теплоносителя в здание

Важнейшим элементом системы отопления любого конструктивного исполнения является узел ввода теплоносителя в здание. Наиболее энергоэффективными решениями являются автоматизированный узел управления – АУУ (вариант зависимой схемы присоединения системы отопления) или индивидуальный тепловой пункт – ИТП (вариант независимой схемы присоединения с теплообменниками контура отопления и ГВС). В этих устройствах обеспечивается соблюдение температурного графика, адекватного температуре наружного воздуха и текущему теплопотреблению здания, а также надежная насосная циркуляция теплоносителя в системе отопления.

Экономический эффект от применения указанных устройств составляет от 10 до 30%, в зависимости от соответствия состояния здания проектным решениям и условий его эксплуатации.

Известен ряд альтернативных АУУ технических решений узла ввода, таких как:

  • узел смешения теплоносителя с элеваторами с постоянным или изменяющимся коэффициентом смешения;
  • узел без смешения теплоносителя; применяется при подаче в здание теплоносителя с температурой, равной расчетной температуре в системе отопления.

На наш взгляд, применение этих устройств и технических решений в энергоэффективных системах отопление неприемлемо. Техническая аргументация, квалифицированно обосновывающая неадекватность таких решений для современных систем отопления давно известна. Однако, по разным причинам, критика не всегда принимается во внимание.

Разовое применение таких решений приводит к возникновению проблем в единичном здании. Однако, когда допущение о применении элеватора включается в нормативы, в частности, в актуализированный СНиП ОВК, как это сделано сейчас, – это уже более серьезная ошибка, которая приведет к массовым превышениям нормируемого уровня энергоэффективности во вновь возводимых и модернизируемых зданиях.

В подтверждении этого можно сослаться на работу коллег из ВТИ , в которой рассмотрен ряд возможных схем автоматизированных элеваторных узлов смешения. В работе детально проанализированы основные недостатки каждой из схем. Общим является то обстоятельство, что для обеспечения адекватной работоспособности таких устройств необходимо поддержание в системе отопления постоянного и малого по своей величине гидравлического сопротивления. Однако эти требования практически невыполнимы при наличии в системе отопления терморегуляторов и другой арматуры автоматического регулирования.

Отметим также негативную эксплуатационную практику применения таких элеваторов.

С учетом сказанного, считаем актуальным просить авторов проекта актуализированной версии СНиП ОВК исключить рекомендацию по применению элеваторных узлов в системах отопления зданий как противоречащую требованию по обеспечению нормативного энергоэффективного уровня теплопотребления.

Поддержание расчетного распределения потока теплоносителя

Данное мероприятие позволяет исключить перетопы или дефицит тепла на отдельных стояках традиционных вертикальных систем отопления. Такая возможность обеспечивается установкой на стояках автоматических балансировочных клапанов, поддерживающих постоянство перепада давления в стояках двухтрубных систем или постоянство расхода в стояках однотрубных систем отопления.

Для вертикальных двухтрубных систем отопления это мероприятие не вызывает вопросов у специалистов, однако относительно однотрубной системы ряд экспертов высказывают сомнения в его актуальности.

Эти сомнения базируются на следующем:

  • значительное количество вертикальных однотрубных систем, особенно в типовом домостроении, рассчитано по методу переменных (скользящих) перепадов температур, что теоретически должно обеспечивать гидравлическую сбалансированность стояков;
  • в однотрубных системах отопления даже при срабатывании термостатов поддерживается постоянный расход теплоносителя, то есть автоматизированный контроль и регулировка стояков не требуются.

По каждому из этих утверждений есть достаточно простая контраргументация. В частности, по методу расчета: известны расчетные ограничения этого метода, не позволяющие достаточно точно сбалансировать стояки . Также не корректно утверждение о постоянстве расхода при коэффициенте затекания порядка 0,25 и при изменении расхода теплоносителя, связанного с изменением гравитационного давления в стояках. Все это достаточно легко показать в цифрах.

Однако все эти расчетные эффекты перекрываются влиянием ошибок и допущений, вносимых в систему отопления в массовом порядке при ее проектировании и монтаже, а также изменениями в конструкции системы, вносимыми жильцами в пределах квартиры.

Результаты обследования типовых секционных зданий показали разброс расхода теплоносителя на контрольных стояках в пределах ±30% относительно проектных значений. После установки балансировочных клапанов и их настройки на проектные значения дисбаланс не превышал ±3%.

В результате теплопотребление зданий снизилось на 7–12% за счет сокращения необоснованного проветривания в помещениях на «перегретых» стояках и снижения настроек автоматики узла ввода, защищающих отстающие стояки (рис. 1).

Рисунок 2.

Энергоэффективность автоматической балансировки стояков

Терморегулирование стояков как средство качественного регулирования теплоотдачи

Следующий шаг в повышении энергоэффективности традиционной однотрубной системы отопления – обеспечить количественное регулирование теплоотдачи системы не только на уровне отопительных приборов, посредством термостатов, но и на стояках, посредством установки терморегуляторов в корне стояков, совместив их конструктивно с балансировочными клапанами. Принцип регулирования температуры стояка представлен на рис. 2.

Рисунок 2.

Принципиальная схема функционирования стояков

Эффект обеспечивается путем сокращения расхода теплоносителя через конкретный стояк, температура теплоносителя в котором повышается в результате закрытия термостатов при избытке тепла в отдельных помещениях.

Результаты функционирования терморегулятора на одном из контрольных стояков представлены на рис. 3. Из графиков видно сокращение расхода теплоносителя в стояке как следствие повышения в нем температуры теплоносителя в результате закрытия термостатов на отдельных отопительных приборах. При этом температура воздуха в контрольном помещении не изменяется.

Рисунок 3 ()

Результаты функционирования терморегулятора на контрольном стояке

Значения настройки данных устройств определяются в ходе обследования здания и выявления потенциала теплоизбытков. Наиболее эффективны «постоячные» терморегуляторы с электроприводом и системой автоматического контроля температуры теплоносителя в стояках.

Экономический эффект от применения терморегулирования стояков зависит от величины не учтенных в проекте избыточных теплопоступлений в здание, в том числе от избыточной поверхности нагрева отопительных приборов. По результатам обследования экспериментальных зданий эффект составил от 8 до 12% в зависимости от состояния здания.

Энергоэффективность отопительных приборов

Отопительные приборы во многом определяют энергоэффективность системы отопления. Выбор типа отопительного прибора не однозначен и требует анализа большого количества его свойств и особенностей. Для облегчения выбора, адекватного задаче энергоэффективности системы в целом, представляется целесообразным введение системы оценки классов энергоэффективности отопительных приборов, по аналогии с классификацией зданий.

Ниже, в порядке дискуссии, представлена идеология одного из возможных вариантов системы оценки класса энергоэффективности отопительных приборов. Система предполагает балльную оценку качества отопительных приборов по ряду показателей. Показатели могут быть представлены в виде количественной оценки – кВт,%, час и т.п., либо в виде качественной оценки – много, мало, высокий, низкий и т.п. Каждому классу энергоэффективности соответствует сумма баллов, набранная в результате экспертной оценки отопительного прибора по каждому из показателей. Ниже представлен пример такой системы оценки для определенных типов приборов.

Таблица 1
Пример определения класса энергоэффективности отопительных приборов
Показатели 5 баллов 4 балла 3 балла 2 балла
1 Инерционность +/+
2 Регулируемость + +
3 Остаточная теплоотдача + +
4 Материалоемкость +/+
5 Гидравлическое сопротивление + +
6 Доля радиационного теплообмена +/+
7 ………………………………

Для представленных в табл. 1 показателей принимаем следующую классификацию энергоэффективности отопительных приборов по сумме баллов:

  • класс А – 25–30 баллов;
  • класс В – 18–24 балла;
  • класс С – 12–17 баллов.

В качестве примера рассмотрим стальной пластинчатый конвектор типа КСК.

Пример 1

Оснащение конвектора:

  • автоматический терморегулятор на входе теплоносителя;
  • «термотормоз» отсутствует;
  • замыкающий участок отсутствует.
  • Сумма баллов – 25 (см. черные кресты в таблице).

Класс энергоэффективности – А.

Пример 2

Оснащение конвектора:

  • автоматический терморегулятор на калаче;
  • «термотормоз» на обратной подводке;
  • замыкающий участок установлен.
  • Сумма баллов – 22 (см. красные кресты в таблице).

Класс энергоэффективности – В.

Индивидуальный (поквартирный) учет тепла

Индивидуальный (поквартирный) учет тепла с оплатой по фактическому его потреблению является важнейшим фактором, мотивирующим жильцов к энергосбережению. Без этого мероприятия система энергосберегающих мероприятий остается «разомкнутой», базирующейся только на административных рычагах.

Известны следующие основные типы систем индивидуального учета тепла, применяемых для традиционных вертикальных однотрубных систем отопления:

  • Система с аллокаторами (heat cost allocator – распределитель стоимости потребленной теплоты) на каждом отопительном приборе, регистрирующая разницу температур (∆tалл) между поверхностью отопительного прибора и воздухом помещения. Расход теплоносителя регистрируется на домовом счетчике и участвует только в расчете подомового теплопотребления.
  • Система с датчиками температур теплоносителя, установленными в стояке на каждом этаже, регистрирующая разницу температур (∆tэт) теплоносителя в стояке в пределах каждого этажа. Расход теплоносителя регистрируется на каждом стояке и в подомовом теплосчетчике.

Для вертикальных двухтрубных систем отопления применяется только система с аллокаторами.

Обе указанные выше системы распределительные, принципы их работы достаточно подробно описаны в литературе. В данной статье рассматривается только один аспект – точность расчета теплопотребления. Эта информация должна позволить проектировщику сделать выбор между системами, адекватный задачам энергосбережения и защиты прав жильца на справедливую оплату за потребленное тепло.

В табл. 2 представлены диапазоны изменения перепадов температур ∆tалл и ∆tэт и соответствующие им погрешности вычислений σt в рассматриваемых системах индивидуального учета в зависимости от этажности здания и температуры теплоносителя в течение отопительного сезона.

При этом погрешность определения ∆tэт рассчитана с учетом погрешности измерения датчика температур ∆tдат = 0,05 °C.

В ходе эксплуатации системы, в силу ряда причин, возможно снижение точности измерения датчика. Для иллюстрации в табл. 2 в скобках представлены данные, рассчитанные для ∆tдат = 0,1 °C для варианта с наибольшей погрешностью.

Как видно из таблицы, ∆tалл >> ∆tэт, при этом абсолютные значения ∆tэт весьма малы. Оба эти обстоятельства существенно влияют на точность начисления платежей. Так, при среднем ежемесячном начислении за потребленное тепло, например 2000 руб., необоснованная переплата или недоплата отдельных жильцов может составить:

  • 450–550 руб./месяц для системы с датчиками на стояках при ∆tдат = 0,05 °C;
  • 650–1 050 руб./месяц для системы с датчиками на стояках при ∆tдат = 0,1 °C;
  • 60–100 рублей в месяц для системы учета с аллокаторами.

Как видно из примера погрешность начисления платежей для системы с датчиками на стояках в несколько раз превышает погрешность системы с аллокаторами.

Очевидно, что ошибка начислений возможна в обе стороны: как в пользу жильца, так и в пользу поставщика ресурсов. В обоих случаях невозможно свести баланс по показаниям поквартирных и подомового счетчика, а также исключить жалобы со стороны жильцов или поставщика тепла, вплоть до судебных разбирательств.

В любом случае, при коммерческом расчете за тепло к применению следует рекомендовать систему индивидуального учета с наименьшей возможной погрешностью.

Заключение

  1. Рассмотренные мероприятия по модернизации существующих вертикальных однотрубных и двухтрубных систем отопления показывают, что для существенного повышения их энергоэффективности нет необходимости производить радикальную реконструкцию традиционных систем, достаточно дооснастить их соответствующим оборудованием.
  2. Для обеспечения заданного класса энергоэффективности в процессе проектирования нового здания или модернизации существующего здания целесообразно разработать рекомендации по оптимальному выбору основных элементов здания, вплоть до разработки для некоторых из них специальных систем классификации, аналогичных общей системе классификации зданий.

Литература

  1. Байбаков С.А., Филатов К.В. О возможности регулирования элеваторных узлов систем отопления // Новости теплоснабжения.– 2010.– № 7.
  2. Богословский В.Н., Сканави А.Н. Отопление.М. : Стройиздат, 1991.
  3. Стандарт АВОК «Распределители стоимости потребленной теплоты от комнатных отопительных приборов». СТО НП «АВОК» 4.3–2007 (EN 834:1994).

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх