Расчеты по отоплению

Содержание

Расчет отопления по площади помещения

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Расчет отопления по площади помещения

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить расчет отопления в частном доме калькулятор, встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3

  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Расчет тепловой мощности от объема помещения

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют биметаллические радиаторы отопления

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната — комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» — коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8;

— внешняя стена одна: а = 1,0;

— внешних стен две: а = 1,2;

— внешних стен три: а = 1,4.

  • «b» — коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

На количество теплопотерь через стены влияет их расположение относительно сторон света

Возможно, вас заинтересует информация о том, какие бывают электрические котлы для отопления частного дома

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток: b = 1,1;

— внешние стены помещения ориентированы на Юг или Запад: b = 1,0.

  • «с» — коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

Существенные коррективы могут внести преобладающие зимние ветры

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» — графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2;

— подветренные стены дома: с = 1,0;

— стена, расположенные параллельно направлению ветра: с = 1,1.

  • «d» — поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Карта-схема минимальных январских температур

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5;

— от – 30 °С до – 34 °С: d = 1,3;

— от – 25 °С до – 29 °С: d = 1,2;

— от – 20 °С до – 24 °С: d = 1,1;

— от – 15 °С до – 19 °С: d = 1,0;

— от – 10 °С до – 14 °С: d = 0,9;

— не холоднее – 10 °С: d = 0,7.

  • «е» — коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Огромное значение имеет степень утепленности внешних стен

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85.

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» — поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0;

— высота потоков от 2,8 до 3,0 м: f = 1,05;

— высота потолков от 3,1 до 3,5 м: f = 1,1;

— высота потолков от 3,6 до 4,0 м: f = 1,15;

— высота потолков более 4,1 м: f = 1,2.

  • «g» — коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2;

— снизу расположено отапливаемое помещение: g = 1,0.

  • «h» — коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9;

— сверху расположено любое отапливаемое помещение: h = 0,8.

  • «i» — коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85.

  • «j» — поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Чем больше площадь остекления, тем значительнее общие теплопотери

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑Sок / Sп

∑Sок – суммарная площадь окон в помещении;

Sп – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8;

— х = 0,11 ÷ 0,2 → j = 0,9;

— х = 0,21 ÷ 0,3 → j = 1,0;

— х = 0,31 ÷ 0,4 → j = 1,1;

— х = 0,41 ÷ 0,5 → j = 1,2;

  • «k» — коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0;

— одна дверь на улицу или на балкон: k = 1,3;

— две двери на улицу или на балкон: k = 1,7.

  • «l» — возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • «m» — поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента «m»
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части — декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья — «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Для примера взят совершенно произвольный план жилого дома

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и «соседство» сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и «розы ветров». Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху — утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху — утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху — утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху — утепленный чердак Две, Север — Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху — утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.

Калькулятор расчета требуемой тепловой мощности отопления по помещениям

Согласитесь, что рассчитанные результаты, особенно если рассматривать по помещениям в отдельности, могут существенно отличаться от тех, которые получились бы при упоминавшимся выше соотношении 100 Вт на 1 м².

Кстати, калькулятор дает возможность немного «поиграть» с теми исходными данными, которые хозяева в силах изменить, и посмотреть, как будут меняться результаты. Возможно, это поможет выявить «слабые места» и придаст своеобразный импульс на принятие мер по обеспечению максимальной утепленности дома. Затраты на качественную термоизоляцию очень быстро окупятся экономией на системе отопления.

Приведенная система расчета тепловой мощности отопления может вызвать вопрос в том плане, что достаточно размыто указаны критерии утепленности стен. С этим можно согласиться – но это сделано лишь для упрощения самостоятельны вычислений с вполне допустимым уровнем погрешности. Если отталкиваться от точного «канонического» расчета тепловых потерь, алгоритм получится слишком сложным и громоздким, и далеко не каждый среднестатистический посетитель сможет с ним разобраться.

Тем не менее, в качестве полезного «бонуса» будет представлена несложная методика достаточно точной оценки теплотехнических характеристик стен и других элементов здания, чтобы любой хозяин смог сам увидеть, насколько они утеплены, и в какой дополнительной термоизоляции еще нуждаются.

Возможно, вас заинтересует информация о том, каков расход газа на отопление дома 200м2

Оценка степени утепленности элемента дома и требуемой толщины термоизоляции

Общий принцип расчета

Принцип расчета заключается в том, что каждая строительная конструкция жилого дома должна обладать определенным нормированным значением сопротивления теплопередаче. Эти параметры рассчитаны специалистами и сведены в таблицах СНиП, отдельно для каждого региона, в зависимости от особенностей климатических условий.

Таблицы слишком объемны, поэтому в нашем случае предлагаем воспользоваться картой-схемой, расположенной ниже.

Карта схема с нормированными значениями сопротивления теплопередаче строительных конструкций

Обратите внимание, что для стен, перекрытий (полов или потолков) и покрытий (кровля) указаны свои значений – они выделены различными оттенками.

Чаще всего и стены, и другие ограждающие элементы дома имеют многослойную конструкцию (впрочем, это не догма – возможно и однослойное строение, но так расчет будет ещё проще). Каждый из слоев обладает собственными характеристиками термического сопротивления, и все они в сумме дадут итоговый параметр.

Значение сопротивления теплопередаче для каждого отдельного слоя равно:

Rx = hх / λх

hх — толщина слоя в метрах

λх — значение коэффициента теплопроводности материала слоя. Это табличная величина, которую несложно отыскать в справочниках для любого из строительных, отделочных или утеплительных материалов.

Таким образом, зная особенности конструкции стены или другого ограждения, несложно рассчитать суммарную величину сопротивления теплопередаче и выявить, насколько она не соответствует нормированному значению. Ну а если полученную разницу умножить на коэффициент теплопроводности выбранного термоизоляционного материала, то это станет рекомендуемой толщиной утепления, чтобы конструкция соответствовала необходимым параметрам.

Упрощенная схема многослойной ограждающей конструкции

В предложенном ниже калькуляторе предусмотрен расчет для многослойной конструкции, включающей основной слой (поз. 1), уже имеющееся утепление (если оно есть) (поз. 2), слой внутренней (поз. 3) и внешней (поз. 4) отделки. Если каких-то слоев в реальности нет – то этот пункт в калькуляторе просто не заполняется.

Примечание: в расчёт не берутся внешние отделочные слои вентилируемых конструкций фасада или кровли (например, сайдинг или кровельный материал), так как их термическое сопротивление не оказывает значимого воздействия на общую утепленность.

Последним пунктом в калькуляторе будет предложено выбрать тот или иной вид утеплителя, и в результате расчетов будет указана рекомендуемая толщина термоизоляционного слоя.

Возможно, вас заинтересует информация о том, что какой утеплитель лучше под сайдинг

Калькулятор оценки необходимости дополнительного утепления

Вот теперь оценить степень утепленности своих стен (или других элементов здания), для расчета необходимой тепловой мощности отопления – уже не составит большого труда. Можно поступить примерно так – ввести все запрашиваемые значения, а в конце указать в качестве утеплителя, например, минеральную базальтовую вату.

  • Если получится результат, стремящийся к нулю (менее 10 мм толщины) или даже отрицательное значение, то можно считать стены хорошо утепленными.
  • При рекомендуемой толщине утепления до 75 ÷ 80 мм можно условно считать, что стены имеют среднюю степень утепленности.
  • В том случае, когда результат больше, а еще хуже — «зашкаливает» за 100 мм – беда, уровень теплопотерь очень высокий, и система отопления будет «пожирать» энергоресурсы на никому не нужный «обогрев улицы». И в этом случае главные усилия должны быть сконцентрированы на обеспечение надежной термоизоляции.

Безусловно, при желании в интернете можно отыскать более мощные программы профессионального уровня сложности для расчета теплотехнических характеристик системы отопления. В качестве примера – видеосюжет, в котором показан процесс подобного расчета. Но, повторимся, для проведения самостоятельных вычислений вполне подойдет и предложенная методика – уровень погрешности будет вполне допустимым. Печь долгого горения узнавайте по ссылке.

Видео: пример расчета системы отопления с помощью специальной прикладной программы

Возможно, вас заинтересует информация о том, что такое байпас в системе отопления

Способы расчета тепловой нагрузки на отопление

4 Сложная методика

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Расчет теплоотвода (радиатора охлаждения) силового элемента (транзистора, диода, тиристора, стабилитрона)

Как рассчитать систему отвода тепла от силового элемента электронной схемы (10+)

Расчет теплоотвода силового элемента

1 2

Оглавление :: ПоискТехника безопасности :: Помощь

Чтобы рассчитать отвод тепла от силового элемента, используется понятие теплового сопротивления. По определению:

Это означает, что если от горячей точки к холодной поступает тепловая мощность X Вт, а тепловое сопротивление составляет Y грЦ / Вт, то разница температур составить X * Y грЦ.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Формула для расчета охлаждения силового элемента

Для случая расчета теплоотвода электронного силового элемента то же самое можно сформулировать так:

В результате расчета мы должны получить такую температуру кристалла, чтобы она была меньше максимально допустимой, указанной в справочнике.

Где взять данные для расчета?

Тепловое сопротивление между кристаллом и корпусом для силовых элементов обычно приводится в справочнике. И обозначается так:

Пусть Вас не смущает, что в справочнике написаны единицы измерения K/W или К/Вт. Это означает, что данная величина приведена в Кельвинах на Ватт, в грЦ на Вт она будет точно такой же, то есть X К/Вт = X грЦ/Вт.

Обычно в справочниках приведено максимально возможное значение этой величины с учетом технологического разброса. Она нам и нужно, так как мы должны проводить расчет для худшего случая. Для примера максимально возможное тепловое сопротивление между кристаллом и корпусом силового полевого транзистора SPW11N80C3 равно 0.8 грЦ/Вт,

Тепловое сопротивление между корпусом и радиатором зависит от типа корпуса. Типичные максимальные значения приведены в таблице:

TO-3 1.56
TO-3P 1.00
TO-218 1.00
TO-218FP 3.20
TO-220 4.10
TO-225 10.00
TO-247 1.00
DPACK 8.33

Изоляционная прокладка. По нашему опыту правильно выбранная и установленная изолирующая прокладка увеличивает тепловое сопротивление в два раза.

Тепловое сопротивление между корпусом / радиатором и окружающей средой. Это тепловое сопротивление с точностью, приемлемой для большинства устройств, рассчитать довольно просто.

= / .

Такой расчет подходит для условий, когда элементы и радиаторы установлены без создания специальных условий для естественного (конвекционного) или искусственного обдува. Сам коэффициент выбран из нашего практического опыта.

Спецификация большинства радиаторов содержит тепловое сопротивление между радиатором и окружающей средой. Так что в расчете надо пользоваться именно этой величиной. Рассчитывать эту величину следует только в случае, если табличных данных по радиатору найти не удается. Мы часто для сборки отладочных образцов используем б/у радиаторы, так что эта формула нам очень помогает.

Для случая, когда отвод тепла осуществляется через контакты печатной платы, площадь контакта также можно использовать в расчете.

Для случая, когда отвод тепла через выводы электронного элемента (типично диодов и стабилитронов относительно малой мощности), площадь выводов вычисляется, исходя из диаметра и длины вывода.

Пример расчета отвода тепла от стабилитрона без радиатора

Пусть стабилитрон имеет два вывода диаметром 1 мм и длиной 1 см. Пусть он рассеивает 0.5 Вт. Тогда:

Площадь выводов составит около 0.6 кв. см.

Тепловое сопротивление между корпусом (выводами) и окружающей средой составит 120 / 0.6 = 200.

Тепловым сопротивлением между кристаллом и корпусом (выводами) в данном случае можно пренебречь, так как оно много меньше 200.

Примем, что максимальная температура, при которой будет эксплуатироваться устройство, составит 40 грЦ. Тогда температура кристалла = 40 + 200 * 0.5 = 140 грЦ, что допустимо для большинства стабилитронов.

Онлайн расчет теплоотвода — радиатора

Обратите внимание, что у пластинчатых радиаторов нужно считать площадь обеих сторон пластины. Для дорожек печатной платы, используемых для отвода тепла, нужно брать только одну сторону, так как другая не контактирует с окружающей средой. Для игольчатых радиаторов необходимо приблизительно оценить площадь одной иголки и умножить эту площадь на количество иголок.

Онлайн расчет отвода тепла без радиатора

Если на одном теплоотводе установлено несколько элементов, то расчет выглядит так. Сначала рассчитываем температуру радиатора по формуле:

Далее рассчитываем для каждого элемента.

Проверяем, что температура кристалла на превышает максимально допустимую.

:: (в начало статьи)

1 2

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Инвертор, преобразователь, чистая синусоида, синус…
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за…

Импульсный источник питания светодиода светодиодного фонаря, светильни…
Схема импульсного источника питания ярких светодиодов….

Резонансный инвертор, преобразователь напряжения повышающий. Схема, ко…
Инвертор 12/24 в 300. Резонансная схема….

Динамическое, дифференциальное сопротивление. Нелинейные элементы. Пон…
Понятие дифференциального, динамического сопротивления. Определение. Свойства….

Расчет тепловой нагрузки на отопление здания

Другие способы определения количества тепла

Добавим, что также существуют и другие способы, при помощи которых можно рассчитать объем тепла, которое поступает в систему отопления. В данном случае формула не только несколько отличается от приведенных ниже, но и имеет несколько вариаций.

Что же касается значений переменных, то они здесь те же, что и в предыдущем пункте данной статьи. На основании всего этого можно сделать уверенный вывод, что рассчитать тепло на отопление вполне можно своим силами. Однако при этом не стоит забывать о консультации со специализированными организациями, которые ответственны за обеспечение жилья теплом, так как их методы и принципы произведения расчетов могут отличаться, причем существенно, а процедура может состоять из другого комплекса мер.

Если же вы намереваетесь обустроить систему «теплого пола», то подготовьтесь к тому, что процесс расчета будет более сложным, поскольку здесь учитываются не только особенности контура отопления, но и характеристик электрической сети, которая, собственно, и будет подогревать пол. Более того, организации, которые занимаются установкой подобного рода оборудования, также будут другими.

Обратите внимание! Люди нередко сталкиваются с проблемой, когда калории следует переводить в киловатты, что объясняется использованием во многих специализированных пособиях единицы измерения, которая в международной системе называется «Си». >. В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850

Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий

В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850. Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий.

Дабы избежать возможных ошибок, не стоит забывать и о том, что практически все современные тепловые счетчики работают с некоторой погрешностью, пусть и в пределах допустимого. Такую погрешность также можно рассчитать собственноручно, для чего необходимо использовать следующую формулу:

Традиционно, теперь выясняем, что же обозначает каждое из этих переменных значений.

1. V1 – это расход рабочей жидкости в трубопроводе подачи.

2. V2 – аналогичный показатель, но уже в трубопроводе «обратки».

3. 100 – это число, посредством которого значение переводится в проценты.

4. Наконец, Е – это погрешность учетного устройства.

Согласно эксплуатационным требованиям и нормам, предельно допустимая погрешность не должна превышать 2 процентов, хотя в большинстве счетчиков она составляет где-то 1 процент.

В итоге отметим, что правильно произведенный расчет Гкал на отопление позволяет значительно сэкономить средства, затрачиваемые на обогрев помещения. На первый взгляд, процедура эта достаточно сложна, но – и вы в этом убедились лично – при наличии хорошей инструкции ничего трудного в ней нет.

На этом все. Также советуем посмотреть приведенный ниже тематический видеоматериал. Удачи в работе и, по традиции, теплых вам зим!

Гидравлический расчет

Итак, с теплопотерями определились, мощность отопительного агрегата подобрана, остается лишь определиться с объемом необходимого теплоносителя, а, соответственно, и с размерами, а также материалами используемых труб, радиаторов и запорной арматуры.

В первую очередь определяем объем воды внутри отопительной системы. Для этого потребуются три показателя:

  1. Общая мощность отопительной системы.
  2. Разница температур на выходе и входе в отопительный котел.
  3. Теплоемкость воды. Этот показатель стандартный и равен 4,19 кДж.

Гидравлический расчет системы отопления

Формула такова — первый показатель делим на два последних. Кстати, этот тип расчета может быть использован для любого участка системы отопления

Здесь важно разбить магистраль на части, чтобы в каждой скорость движения теплоносителя была одинаковой. Поэтому специалисты рекомендуют делать разбивку от одной запорной арматуры до другой, от одного радиатора отопления к другому

Теперь переходим к расчету потерь напора теплоносителя, которые зависят от трения внутри трубной системы. Для этого используются всего две величины, которые в формуле перемножаются между собой. Это длина магистрального участка и удельные потери трения.

А вот потери напора в запорной арматуре рассчитываются совершенно по другой формуле. В ней учитываются такие показатели, как:

  • Плотность теплоносителя.
  • Его скорость в системе.
  • Суммарный показатель всех коэффициентов, которые присутствуют в данном элементе.

Чтобы все три показателя, которые выведены формулами, подходили к стандартным величинам, необходимо правильно подобрать диаметры труб. Для сравнения приведем пример нескольких видов труб, чтобы было понятно, как их диаметр влияет на тепловую отдачу.

  1. Металлопластиковая труба диаметром 16 мм. Ее тепловая мощность варьируется в диапазоне 2,8-4,5 кВт. Разность показателя зависит от температуры теплоносителя. Но учитывайте, что это диапазон, где установлены минимальный и максимальный показатель.
  2. Та же труба с диаметром 32 мм. В этом случае мощность варьируется в пределах 13-21 кВт.
  3. Труба из полипропилена. Диаметр 20 мм — диапазон мощности 4-7 кВт.
  4. Та же труба диаметром 32 мм — 10-18 кВт.

И последнее — это определение циркуляционного насоса. Чтобы теплоноситель равномерно распределялся по всей отопительной системе, необходимо, чтобы его скорость была не меньше 0,25 м/сек и не больше 1,5 м/сек. При этом давление не должно быть выше 20 МПа. Если скорость теплоносителя будет выше максимально предложенной величины, то трубная система будет работать с шумом. Если скорость будет меньше, то может произойти завоздушивание контура.

Найти течь

Чтобы больше сэкономить, при подведении отопительной системы нужно учесть все «больные» места утечки тепла. Не лишним будет сказать, что окна должны быть герметизированы. Толщина стен позволяет удержать теплоту, теплые полы сохраняют температурный фон на положительной отметке. Расход тепловой энергии на отопление в помещении зависит от высоты потолков, типа вентиляционной системы, строительных материалов при постройке здания.

После вычета всех теплопотерь, нужно серьезно подойти к выбору отопительного котла. Здесь главное – бюджетная часть вопроса. В зависимости от мощности и универсальности варьируется и цена прибора. Если в доме уже проведен газ, то идет экономия на электричестве (стоимость которого немалая), и вместе с приготовлением, например, ужина, заодно и прогревается система.

Еще одним моментом в сохранении тепла является тип обогревателя – конвектор, радиатор, батарея и т.д. Самое подходящее решение вопроса – радиатор
, количество секций которого высчитывается при помощи несложной формулы. Одна секция (ребро) радиатора имеет мощность в 150 Вт, для комнаты в 10 метров достаточно 1700 Вт. Путем разделения получаем 13 секций, необходимых для комфортного обогрева помещения.

При установке отопительной системы путем размещения радиаторов можно сразу же подключить систему теплых полов. Постоянная циркуляция теплоносителя создает равномерную температуру во всем помещении.

При будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы

Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

Назначение здания: жилое или промышленное.

Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

Наличие комнат специального назначения (баня, сауна и пр.).

Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных — количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Тепловые счетчики

А теперь выясним, какая информация нужна для того, чтобы рассчитать отопление. Легко догадаться, что это за информация.

1. Температура рабочей жидкости на выходе/входе конкретного участка магистрали.

2. Расход рабочей жидкости, которая проходит через приборы отопления.

Расход определяется посредством применения устройств теплового учета, то есть счетчиков. Такие могут быть двух типов, ознакомимся с ними.

Крыльчатые счетчики

Такие приборы предназначаются не только для отопительных систем, но и для горячего водоснабжения. Единственным их отличием от тех счетчиков, которые применяются для холодной воды, является материал, из которого выполняется крыльчатка – в данном случае он более устойчив к повышенным температурам.

Что касается механизма работы, то он практически тот же:

  • из-за циркуляции рабочей жидкости крыльчатка начинает вращаться;
  • вращение крыльчатки передается учетному механизму;
  • передача осуществляется без непосредственного взаимодействия, а при помощи перманентного магнита.

Невзирая на то, что конструкция таких счетчиков предельно проста, порог срабатывания у них достаточно низкий, более того, имеет место и надежная защита от искажения показаний: малейшие попытки торможения крыльчатки посредством наружного магнитного поля пресекаются благодаря антимагнитному экрану.

Приборы с регистратором перепадов

Такие приборы функционируют на основе закона Бернулли, утверждающего, что скорость движения потока газа либо жидкости обратно пропорциональна его статическому движению. Но каким образом это гидродинамическое свойство применимо к расчетам расхода рабочей жидкости? Очень просто – нужно всего лишь преградить ей путь посредством подпорной шайбы. При этом скорость падения давления на этой шайбе будет обратно пропорциональной скорости движущегося потока. И если давление будет регистрироваться сразу двумя датчиками, то можно с легкостью определять расход, причем в режиме реального времени.

Обратите внимание! Конструкция счетчика подразумевает наличие электроники. Преимущественное большинство таких современных моделей предоставляет не только сухую информацию (температура рабочей жидкости, ее расход), но и определяет фактическое использование тепловой энергии

Модуль управления здесь оснащен портом для подключения к ПК и может настраиваться вручную.

У многих читателей наверняка появится закономерный вопрос: а как быть, если речь идет не о закрытой отопительной системе, а об открытой, в которой возможен отбор для горячего водоснабжения? Как в таком случае совершать расчет Гкал на отопление? Ответ вполне очевиден: здесь датчики напора (равно как и подпорные шайбы) ставятся одновременно и на подачу, и на «обратку». И разница в расходе рабочей жидкости будет свидетельствовать о том количестве нагретой воды, которая была использована для бытовых нужд.

Как снизить текущие затраты по теплоснабжению

Схема центрального отопления многоквартирного дома

Учитывая постоянно повышающиеся тарифы на оплату ЖКХ за теплоснабжение вопрос о снижении этих расходов становиться с каждым годом только актуальнее. Проблема уменьшения затрат заключается в специфике работы централизованной системы.

Как снизить оплату за отопление и при этом обеспечить должный уровень нагрева помещений? Прежде всего нужно усвоить, что для центрального теплоснабжения не работают обычные эффективные способы уменьшения тепловых потерь. Т.е. если было выполнено утепление фасада дома, произведена замена оконных конструкций на новые – размер оплаты останется тот же.

Единственным способом снижения расходов на отопление является установка индивидуальных счетчиков учета тепловой энергии. Однако при этом можно столкнуться со следующими проблемами:

  • Большое количество тепловых стояков в квартире. В настоящее время средняя стоимость установки счетчика отопления колеблется от 18 до 25 тыс. рублей. Для того, чтобы выполнялись расчеты стоимости отопления по индивидуальному прибору – необходим их монтаж на каждый стояк;
  • Сложность в получении разрешения на установку счетчика. Для этого необходимо получить технические условия и на их основе подобрать оптимальную модель прибора;
  • Для того, чтобы производить своевременную оплату теплоснабжения по индивидуальному счетчику — необходимо периодически отправлять их на поверку. Для этого выполняется демонтаж и последующий монтаж устройства, прошедшего поверку. Это тоже влечет за собой дополнительные расходы.

Принцип работы общедомового счетчика

Но несмотря на эти факторы установка теплового счетчика в конечном итоге приведет к существенному снижению оплаты за услуги теплоснабжения. Если в доме схема с несколькими тепловыми стояками, проходящими через каждую квартиру – можно установить общедомовой счетчик. В этом случае снижение затрат будет не таким существенным.

При расчете оплаты за отопление по общедомовому счетчику учитывается не количество поступившей тепловой энергии, а разница между ней и в обратной трубе системы. Это наиболее приемлемый и открытый способ формирования окончательной стоимости услуги. Помимо этого выбрав оптимальную модель прибора можно дополнительно улучшить отопительную систему дома по следующим показателям:

  • Возможность регулирования количества потребляемой тепловой энергии в здание в зависимости от внешних факторов – температуры на улице;
  • Прозрачный способ расчета оплаты за отопление. Однако при этом происходит распределение общей суммы по всем квартирам в доме в зависимости от их площади, а не по объему тепловой энергии, пришедшей в каждое помещение.

К тому же обслуживанием и настройкой общедомового счетчика могут заниматься только представители управляющей компании. Однако жильцы вправе потребовать всю необходимую отчетность для сверки выполненных и начисленных оплат ЖКХ за теплоснабжение.

Помимо монтажа прибора учета тепла необходимо установить современный смесительный узел для регулирования степени нагрева теплоносителя, входящего в отопительную систему дома.

4 Расчетные тепловые нагрузки школы

Расчет нагрузок на отопление

Расчетную часовую тепловую нагрузку
отопления отдельного здания определяем
по укрупненным показателям:

Qo=η∙α∙V∙q∙(tп-to)∙(1+Kи.р.)∙10-6
(3.6)

где - поправочный
коэффициент, учитывающий отличие
расчетной температуры наружного воздуха
для проектирования отопленияtoотto= -30 °С, при которой определено
соответствующее значение, принимается
по приложению 3 , α=0,94;

V- объем здания по наружному
обмеру,V=2361 м3;

qo—
удельная отопительная характеристика
здания приto= -30 °, принимаемqo=0,523
Вт/(м3∙◦С)

tп— расчетная температура воздуха
в отапливаемом здании, принимаем 16°С

tо— расчетная температура наружного
воздуха для проектирования отопления
(tо=-34◦С)

η- КПД котла;

Kи.р — расчетный коэффициент
инфильтрации, обусловленной тепловым
и ветровым напором, т.е. соотношение
тепловых потерь зданием с инфильтрацией
и теплопередачей через наружные
ограждения при температуре наружного
воздуха, расчетной для проектирования
отопления. Рассчитывается по формуле:

Kи.р=10-2∙1/2
(3.7)

где g- ускорение свободного
падения, м/с2;

L-свободная высота здания,
принимаем равной 5 м;

ω — расчетная для данной местности
скорость ветра в отопительный период,
ω=3м/с

Kи.р=10-2∙1/2=0,044

Qo=0,91∙0,94∙2361∙(16+34)∙(1+0,044)∙0,39
∙10-6=49622,647∙10-6Вт.

Расчет нагрузок на вентиляцию

При отсутствии проекта вентилируемого
здания расчетный расход те плоты на
вентиляцию, Вт , определятся по
формуле для укрупненных расчетов:

Qв =
Vн∙qv∙( ti — tо ),
(3.8 )

где Vн —
объем здания по наружному обмеру, м3
;

qv — удельная
вентиляционная характеристика здания,
Вт/(м 3·°С)
, принимается по
расчету; при отсутствии данных по табл.
6 для общественных зданий ;

tj, —
средняя температура внутреннего воздуха
вентилируемых помещений здания, 16 °С;

tо, — расчетная
температура наружного воздуха для
проектирования отопления, -34°С,

Qв= 2361∙0,09(16+34)=10624,5

Определение количества теплоты
на ГВС

Qгвс=1,2∙M∙(a+b)∙(tг-tх)∙cpср/nc,
(3.9)

где M – расчетное количество потребителей;

a – норма расхода воды на
горячее водоснабжение при температуре

tг=
55 С
на одного человека в сутки, кг/(сут×чел);

b – расход горячей воды с
температурой tг=
55 С,
кг (л) для общественных зданий, отнесенный
к одному жителю района; при отсутствии
более точных данных рекомендуется
принимать b = 25 кг в сутки на одного
человека, кг/(сут×чел);

cpср=4,19
кДж/(кг×К) – удельная теплоемкость воды
при ее средней температуре tср =
(tг-tх)/2;

tх–
температура холодной воды в отопительный
период (при отсутствии данных принимается
равной 5 С);

nc–
расчетная длительность подачи теплоты
на горячее водоснабжение, с/сут; при
круглосуточной подаче nc=24×3600=86400
с;

коэффициент 1,2 учитывает
выстывание горячей воды в абонентских
системах горячего водоснабжения.

Qгвс=1,2∙300∙
(5+25) ∙
(55-5)
∙4,19/86400=26187,5
Вт

Формула расчета

Нормативы расхода тепловой энергии

Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.

Для чего необходим такой коэффициент? С его помощью можно:

  • Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
  • Варьировать температурный режим внутри помещений дома.

Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:

  • Через наружные стены покидает здание до 40% тепла.
  • Через полы — до 10%.
  • То же самое относится и к крыше.
  • Через вентиляционную систему — до 20%.
  • Через двери и окна — 10%.

Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции

Это немаловажный фактор.

К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:

  • Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
  • Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
  • Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.

Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:

  • Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
  • Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
  • При 20% — 1,0.
  • При 30% —2.
  • При 40% — 1,4.
  • При 50% — 1,5.

И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:

Вид строительного материала

Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться. Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома. Тем более что система отопления зимой составляет одну из главных статей расхода.

Размеры комнат и этажность здания

Схема системы отопления

Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?

  • Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
  • При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
  • При 3,5 м — 1,1.
  • При 4,5 м —2.

А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.

При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.

Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери. Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м². Все остальные составляющие формулы — коэффициенты.

Энергетическое обследование проектируемых режимов работы системы теплоснабжения

При проектировании система теплоснабжения ЗАО «Термотрон-завод» была рассчитана на максимальные нагрузки.

Система проектировалась на 28 потребителей тепла. Особенность системы теплоснабжения в том, что часть потребителей тепла от выхода котельной до главного корпуса завода. Далее потребитель тепла — главный корпус завода, и затем остальная часть потребителей располагается за главным корпусом завода. То есть главный корпус завода является внутренним теплопотребителем и транзитом подачи тепла для последней группы потребителей тепловой нагрузки.

Котельная проектировалась на паровые котлы ДКВР 20-13 в количестве 3 штук, работающие на природном газе, и водогрейные котлы ПТВМ-50 в количестве 2 штук.

Одним из важнейших этапов проектирования тепловых сетей являлось определение расчетных тепловых нагрузок.

Расчетный расход тепла на отопление каждого помещения можно определить двумя способами:

— из уравнения теплового баланса помещения;

— по удельной отопительной характеристике здания.

Проектные значения тепловых нагрузок производился по укрупненным показателям, исходя из объема зданий по фактуре .

Расчетный расход тепла на отопление i-го производственного помещения , кВт, определяется по формуле:

, (1)

где: — коэффициент учета района строительства предприятия:

(2)

где — удельная отопительная характеристика здания, Вт/(м3.К);

— объем здания, м3;

— расчетная температура воздуха в рабочей зоне, ;

— расчетная температура наружного воздуха для расчета отопительной нагрузки, для города Брянска составляет -24.

Определение расчетного расхода тепла на отопление для помещений предприятия производилось по удельной отопительной нагрузке (табл. 1).

Таблица 1Расходы тепла на отопление для всех помещений предприятия

ИТОГО ПО ЗАВОДУ:

Расчетный расход тепла на отопление ЗАО «Термотрон-завод» составляет:

Суммарные тепловыделения для всего предприятия составляют:

Расчетные теплопотери для завода определяются, как сумма расчетного расхода тепла на отопление всего предприятия и суммарных тепловыделений, и составляют:

Расчет годового расхода тепла на отопление

Так как предприятие ЗАО «Термотрон-завод» работало в 1 смену и с выходными днями, то годовой расход тепла на отопление определяется по формуле:

(3)

где: -средний расход тепла дежурного отопления за отопительный период, кВт (дежурное отопление обеспечивает температуру воздуха в помещении);

, — число рабочих и нерабочих часов за отопительный период соответственно. Число рабочих часов определяется перемножением продолжительности отопительного периода на коэффициент учета числа рабочих смен в сутках и числа рабочих дней в неделю.

Предприятие работает в одну смену с выходными.

(4)

Тогда

(5)

где: -средний расход тепла на отопление за отопительный период, определяемый по формуле:

. (6)

Вследствие не круглосуточной работы предприятия, рассчитывается нагрузка дежурного отопления для средней и расчетной температур наружного воздуха, по формуле:

Особенности расчета тепловой энергии на отопление здания

3.1 Расшифровка значений

Кириллические буквы взяты по алфавиту и не имеют никакого отношения к математическим формулам или законам физики. Главное, правильно сделать тепловой расчёт помещения.

Можно более детально разъяснить каждую составляющую формулы:

  1. 1. А — количество стен в комнате, которые контактируют с воздухом (внешние стены здания). Разумеется, что наличие внешних стен влечёт за собой тепловые потери. Кроме этого, имеются ещё и угловые комнаты, которые более уязвимы, поскольку имеют «мостики холода». Сквозь углы в помещение попадает больше холода, чем через стены. Подставлять коэффициент по этому фактору необходимо следующим образом: внешних стен нет — умножаем на 0,8, при одной — на 1, при двух — на 1,2, а при трёх — на 1,4.
  2. 2. Б — расположение внешних стен относительно сторон света. Даже в условиях сильных северных холодов солнечные лучи имеют значение. Логично, что стены, которые «смотрят на юг», имеют более сильное солнечное влияние, чем стены, смотрящие на север. На последние этот фактор практически не влияет, так же как и на восточную сторону. Таким образом, коэффициент «Б» можно учитывать только тогда, когда стены развёрнуты на север или восток, умножая на 1,1. Если сторона западная или южная, то учитывать влияние солнца не нужно, то есть умножение происходит только на 1.
  3. 3. В — влияние зимних ветров на теплопотери. Хотя иногда этот фактор и не имеет значения, так как дом расположен на участке с защитой от ветров, но если это не так, то нужно вносить поправку на холодную «розу ветров». Разумеется, что стена, в которую дует «в лоб» ветер, будет иметь намного больше теплопотерь, чем противоположна ей. В любом регионе существует уже составленная согласно многолетним наблюдениям так называемая роза ветров — график, который показывает направления ветра в зимнее и летнее время. Если есть необходимость в такой поправке, то нужно умножить значение на такой коэффициент: наветренная сторона — на 1,2, подветренная — на 1, а параллельная — на 1,1.
  4. 4. Г — учитывание расположения дома в определённых климатических условиях. Большое значение для количества теплопотерь имеет местонахождение здания в определённых климатических условиях. Разумеется, что в зимний период показатели термометра опускаются в минус. Но для каждого региона эти показатели разные. Как правило, эти данные можно уточнить в метеослужбе, но можно сделать расчёты и самостоятельно. При этом необходимо умножать на коэффициент от 0,7 до 1,5 при средней температуре от -10 до -35 градусов.
  5. 5. Д — степень утепления внутренних стен. Одним из значений теплопотерь, которое нужно учитывать при расчёте, является степень изолирования конструкций. В большей мере это относится к стенам здания. То есть их уровень термоизоляции напрямую влияет на теплопотери. Таким образом, если стены без утепления, следует умножать на 1,27, среднее качество — 1, а хорошая термоизоляция — на 0,85.
  6. 6. Е — поправка на высоту потолков. Во многих зданиях потолки не имеют стандартно принятой нормы высоты в 3 метра. В связи с этим и теплопотери могут быть разные исходя из такого параметра. Его стоит также учитывать. Если высота более трех метров, требуется умножать на 1,1, от 3,6 до 4 — на 1,15, более 4 — на 1,2.
  7. 7. Ё — тип пола. Это значение нужно учитывать так же, как и помещение, которое находится под ним. Пол считается одним из основных источников потерь тепла. Поэтому нужно внести некоторые коррективы. Пол без утепления и расположенный под подвальным помещением — следует умножать на 1,4, пол находится над землёй, но имеется утепление — на 1,2, под отапливаемым помещением — на 1.
  8. 8. Ж — тип верхнего помещения и потолка. Как известно, тёплый воздух всегда будет подниматься в верхнюю часть помещения, и если потолок имеет свои особенности и увеличенные теплопотери, то это тоже нужно учитывать. Если сверху расположен чердак с утеплением, то умножать нужно на 0,9, а если отапливаемое помещение, то на 0,8.
  9. 9. З — особенности окон. Следует учитывать и коэффициент инфильтрации здания в расчёте тепловой нагрузки. Окна являются одним из ключевых факторов при большой потере тепла. Разумеется, что в основном это зависит от качества производства самой оконной конструкции. Ранее устанавливались только деревянные конструкции, которые по степени потерь тепла значительно уступают современным стеклопакетам с несколькими камерами. Хотя и стеклопакеты бывают разные. К примеру, двухкамерные конструкции будут намного теплее однокамерных. Для учёта этого фактора следует подставлять такие значения: Деревянные окна с двойным остеклением — 1,27, однокамерные стеклопакеты — 1, двухкамерные — 0,9.
  10. 10. И — общая площадь остекления. Хотя можно установить самые новые окна с 3 камерами и аргоновым покрытием, но полностью избежать потерь тепла не удастся. Для того чтобы определить это значение, необходимо сначала найти общую площадь окон с помощью формулы х = Sок / Sп. После этого, в зависимости от полученного значения, умножать его от 0,8 до 1,2.
  11. 11. Й — наличие входной двери. Входная дверь или балкон также имеют большое значение для расчёта тепловой нагрузки на отопление здания. При каждом открытии в комнату поступает определённое количество холодного воздуха. Это нужно учитывать при расчётах теплопотерь. Если имеется одна дверь на улицу или на балкон, то умножать нужно на 1,3, а если две, то на 1,7.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх